
Mathematical Biosciences and Engineering, 2020, 17(6): 67026719. doi: 10.3934/mbe.2020349
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Approximation of invariant measure for a stochastic population model with Markov chain and diffusion in a polluted environment
1 State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
2 Xinhua College, Ningxia University, Yinchuan 750021, China
3 Department of Earth, Ocean, and Atmospheric Science and Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, United States
4 School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China
Received: , Accepted: , Published:
References
1. L. Duan, Q. Lu, Z. Yang, L. Chen, Effects of diffusion on a stagestructured population in a polluted environment, Appl. Math. Comput., 02 (2004), 347359.
2. A. J. Shaw, Ecological genetics of plant populations in polluted environment. Ecological Genetics and Air Pollution, Springer New York, 1991.
3. G. P. Samanta, A. Maiti, Dynamical model of a singlespecies system in a polluted environment, J. Appl. Mathe. Comput., 16 (2004), 231242.
4. T. G. Hallam, C. E. Clark, R. R. Lassiter, Effects of toxicants on populations: a qualitative approach I. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291304.
5. T. G. Hallam, C. E. Clar, G. S. Jordan, Effects of toxicant on population: a qualitative approach II. First Order Kinetics, J. Math. Biol., 109 (1983), 411429.
6. D. Mukherjee, Persistence and global stability of a population in a polluted environment with delay, J. Biol. Syst., 10 (2008), 225232.
7. Z. Ma, G. Cui, W. Wang, Persistence and extinction of a population in a polluted environment, Math. Biosci., 101 (2004), 7597.
8. T. G. Hallam, Z. Ma, Persistence in Population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327339.
9. J. Pan, Z. Jin, Z. Ma, Thresholds of survival for an ndimensional Volterra mutualistic system in a polluted environment, J. Math. Anal. Appl., 252 (2000), 519531.
10. Z. Ma, B. J. Song, T. G. Hallam, The threshold of survival for systems in a fluctuating environment, Bull. Math. Biol., 51 (1989), 311323.
11. M. Liu, K. Wang, Persistence and extinction of a stochastic singlespecies population model in a polluted environment with impulsive toxicant input, Electron. J. Differ. Equ., 230 (2013), 823840.
12. X. Yu, S. Yuan, T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 359374.
13. F. Wei, S. A. H. Geritz, J. Cai, A stochastic singlespecies population model with partial pollution tolerance in a polluted environment, Appl. Math. Lett., 63 (2017), 130136.
14. M. Liu, K. Wang, Persistence and extinction of a stochastic singlespecie model under regime switching in a polluted environment. J. Theor. Biol., 267 (2010), 283291.
15. M. Liu, K. Wang, Survival analysis of a stochastic singlespecies population model with jumps in a polluted environment, Int. J. Biomath., 09 (2016), 115.
16. Y. Zhao, S. Yuan, Q. Zhang, The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment, Appl. Math. Model., 40 (2016), 75837600.
17. T. C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 14111419.
18. J. Tong, Z. Zhang, J. Bao, The stationary distribution of the facultative population model with a degenerate noise, Discrete Continuous Dyn. Syst., 83 (2013), 655664.
19. M. Liu, K. Wang, Y. Wang, Long term behaviors of stochastic singlespecies growth models in a polluted environment, Appl. Math. Model., 35 (2011), 44384448.
20. C. Yuan, X. Mao, Stationary distributions of EulerMaruyamatype stochastic difference equations with Markovian switching and their convergence, J. Differ. Equ. Appl., 11 (2005), 2948.
21. G. Yin, X. Mao, K. Yin, Numerical approximation of invariant measures for hybrid diffusion systems, IEEE Trans. Automat. Contr., 50 (2005), 934946.
22. J. Bao, J. Shao, C. Yuan, Approximation of invariant measures for regimeswitching diffusions, Potential Anal., 44 (2016), 707727.
23. H. Yang, X. Li, Explicit approximations for nonlinear switching diffusion systems in finite and infinite horizons, J. Differ. Equ., 265 (2018), 29212967.
24. X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, 2006.
25. G. Dhariwal, A. Jungel, N. Zamponi, Global martingale solutions for a stochastic population crossdiffusion system, Stoch. Process. their Appl., 129 (2019), 37923820.
26. G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge, 1996.
27. G. Yin, C. Zhu, Hybrid swithching diffusion: Properties and Applications, Springer, 2010.
28. Y. Zhao, S. Yuan, Q. Zhang, Numerical solution of a fuzzy stochastic singlespecies agestructure model in a polluted environment, Appl. Math. Comput., 260 (2015), 385396.
29. W J. Anderson, Continuoustime Markov chains, Springer, Berlin, 1991.
30. J. Tan, A. Rathinasamy, Y. Pei, Convergence of the splitstep θmethod for stochastic agedependent population equations with Poisson jumps, Elsevier Science Inc, 254 (2015), 305317.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)