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Abstract: In the paper, we propose a novel stochastic population model with Markov chain and
diffusion in a polluted environment. Under the condition that the diffusion coefficient satisfies
the local Lipschitz condition, we prove the existence and uniqueness of invariant measure for the
model. Moreover, we also discuss the existence and uniqueness of numerical invariance measure
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in the Wasserstein distance sense. Finally, we give the numerical simulation to show the correctness of
the theoretical results.
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1. Introduction

With the rapid development of industry and agriculture, the environment pollution has caused
many serious ecological problems (see [1–3]), such as the reduction of species diversity and the
extinction of some species. Therefore, it motivates many scholars’ interest to study dynamic behavior
of population in a polluted environment by establishing mathematical models. The population model
in a polluted environment was first proposed by Hallam et al. [4, 5]. From then on, more
investigations and discussions on the dynamic behavior of the deterministic population model can be
found (see [6–10]). But in practical problems, population changes are affected not only by
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environmental noise but also by sudden changes of temperature and climate. Thus, several scholars
have introduced random perturbations into population model to study dynamic behavior. For
example, Liu and Wang [11] established the stochastic population model with impulsive toxicant
input and obtained sufficient conditions on extinction, persistence, stability in the mean.
Subsequently, Yu et al. [12] proved the existence of global positive solution for the stochastic
population model with Allee effect under regime switching and established the threshold. In [13], Wei
et al. proposed a stochastic population model with partial tolerance, discussed the conditions for
population the extinction and proved the stationary distribution with ergodicity by constructing the
Lyapunov function. Liu et al. [14] considered the significance of white noise and color noise on
population persistence and extinction and studied stochastic population model with Markov
switching. More research results on the persistence, extinction, and stability of random population
models and others have been presented (see [15–19]). However, the above mentioned references
didn’t consider the invariant measure of population system with diffusion.

In fact, in the real world, the population and toxins in the ecology spread around the medium such
as soil and water. In addition, we also know that the existence and uniqueness of invariant measure is
one of the important properties for stochastic population model with Markov switching and diffusion.
Nevertheless, if we introduce diffusion into stochastic population model, the corresponding
Kolmogorov-Fokker-Planck (KFP) equation will become more complicated. Furthermore, the
invariant measure of stochastic population model with Markov switching and diffusion is difficult to
obtain. Therefore, it is of great significance to choose an effective numerical approximation method.
To the best of our knowledge, the explicit Euler-Maruyama (EM) method has the advantages of easy
calculation and small calculation amount. Motivated by [20, 21], in the paper, we first develop a new
stochastic population model with Markov switching and diffusion. Under suitable regularity
assumptions, we discuss the existence and uniqueness of numerical invariant measure generated by
the EM method. Subsequently, we prove that numerical invariant measure converges to the invariant
measure of exact solution in the Wasserstein distance sense. In particular, the main contributions of
the paper are as follows:

• We establish a novel stochastic population model with diffusion and Markov switching in a
polluted environment. By using the Chebyshev’s inequality, we obtain the existence and
uniqueness of invariant measure for the model.
• Under local Lipschitz conditions, we study the approximation of numerical invariant measure

generated by the EM method for the newly developed model.

The structure of this article is as follows: In Section 2, we introduce some necessary preliminary
knowledge results for the following analysis. In Section 3, based on the Perron-Frobenius theorem, we
study existence and uniqueness of invariant measure for the exact solution. In Section 4, we mainly
study the existence and uniqueness of numerical invariant measure for the EM scheme. In addition,
we also prove that the numerical invariant measure of the EM scheme converges to invariant measure
of exact solution. In Section 5, the numerical example is given to verify our theoretical results. In
Section 6, we give the conclusions of this study.

2. Preliminaries

In this paper, we introduce Markov switching and spatial diffusion into the model mentioned by Liu
and Wang [15], and obtain the following model
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dX1(t, x) = [k1(t, x)∆X1(t, x) + β(t, x, X2(t, x),Λt)X1(t, x)]dt

− µ(t, x, X2(t, x),Λt)X1(t, x)dt + g(t, X1(t, x),Λt)dWt, in (0,T ) × Γ,

dX2(t, x) = [k2(t, x)∆X2(t, x) + K(Λt)X3(t, x) − (l(Λt) + m(Λt))X2(t, x)]dt, in (0,T ) × Γ,

dX3(t, x) = [k3(t, x)∆X3(t, x) − M(Λt)X3(t, x) + u(t, x)]dt, in (0,T ) × Γ,

X1(0, x) = s1(x), X2(0, x) = s2(x), X3(0, x) = s3(x), in x ∈ Γ,

X1(t, x) = 0, X2(t, x) = 0, X3(t, x) = 0, on (0,T ] × ∂Γ,

(2.1)

where L := (0,T ) × Γ, Γ is a bounded domain in R3 with smooth boundary ∂Γ, t ∈ (0,T ); X1(t, x)
denotes the population density at the location x at time t . X2(t, x) is the concentration of toxicant in
the organism at time t and in spatial position x. The concentration of toxicant in the environment at
the location x at time t is described by X3(t, x). K(Λt) is the net organismal uptake rate of toxicant
from the environment at time t. M(Λt) is the total loss rate of the toxicant from the environment.
µ(t, x, X2(t, x),Λt) denotes the decreasing rate function of the population at time t and in spatial position
x. ki > 0, i = 1, 2, 3 is the diffusion coefficient. β(t, x, X2(t, x),Λt) describes the intrinsic growth rate
function of the population at time t and in spatial position x. u(t, x) denotes the exogenous total toxicant
input into environment at time t and in spatial position x. l(Λt) is the net organismal excretion rate of
toxicant and m(Λt) is depuration rate of toxicant due to metabolic process and other losses.

Throughout the paper, Let (V, ‖ · ‖) and (H, | · |) be two separable Hilbert spaces, with norm denoted
by ‖ · ‖ and | · |, respectively. V is viewed as a subspace of H with a continuous dense embedding.
V b H represents the embedding is compact. V ′ and H′ are the dual of V , H. We set
H3 := H × H × H. Let (Ω,F ,P) be a complete probability space with {Ft}0≤t≤T the natural filtration
generated by the Brownian motion Wt, which means Ft = σ{Ws; 0 ≤ s ≤ t} augmented with all P-null
sets of F0. To construct such a filtration, we denote by N the collection of P-null sets, i.e.
N = {B ∈ F : P(B) = 0}. In the paper, C > 0 represents different positive constants. Let Λt, t > 0, be
a right-continuous Markov chain on the probability space taking values in a finite state
S = {1, 2, . . . ,N} for some positive integer N < ∞. The generator of {Λt}t>0 is specified by
Q = (qi j)N×N , such that for a sufficiently small ∆,

P(Λt+∆ = j|Λt = i) =

qi j∆ + o(∆), i , j,

1 + qii∆ + o(∆), i = j,
(2.2)

where ∆ > 0, o(∆) satisfies lim∆→0
o(∆)

∆
= 0. Here qi j is the transition rate from i to j satisfying qii =

−
∑
i, j

qi j. We assume that the Markov chain {Λt} defined on the probability space above is independent

of the standard Brownian motion {Wt}t≥0 and the Q matrix is irreducible and conservative. Therefore,
the Markov chain {Λt}t≥0 has a unique stationary distribution π := (π1, . . . , πN) which can be determined
by solving the linear equation

πQ = 0 subject to
N∑

i=1

πi = 1 with πi > 0.

Let P(H3 × S) stand for the family of all probability measures on H3 × S. For ξ = (ξ1, ξ2, ξ3)∗ ∈ H3,
ξ � 0 means each component ξi > 0 , i = 1, 2, 3.
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Next, let’s give some necessary assumptions:
(H1) Setting Xsk ,i

k,t := Xsk ,i
k (t, x), k = 1, 2, 3, there exists a positive constant ρi such that for i ∈ S,

(t, x) ∈ L
‖g(t, Xs1,i

1,t , i) − g(t, X s̄1,i
1,t , i)‖

2 ≤ ρi|X
s1,i
1,t − X s̄1,i

1,t |
2, (2.3)

where s1 and s̄1 are the different initial values of the first equation for system (2.1).
From (H1), for each i ∈ S and Xs1,i

1,t ∈ H, we can obtain that for (t, x) ∈ L

‖g(t, Xs1,i
1,t , i)‖

2 ≤ C + ρi|X
s1,i
1,t |

2, (2.4)

where C depends on the initial value of the function g(t, Xs1,i
1,t , i).

(H2) For each i ∈ S, there exist positive constants M̄, β̄ and µ̄ such that
M̄ := max

i
{M(Λi)}, 0 < M̄ < ∞;

0 ≤ β(t, x, Xs2,i
2,t ,Λi) ≤ β̄ < ∞;

0 ≤ µ0 ≤ µ(t, x, Xs2,i
2,t ,Λi) ≤ µ̄ < ∞.

(2.5)

(H3) u(t, x) is non-negative measurable in L, there exists a positive constant ū such that

0 ≤ u0 ≤ u(t, x) ≤ ū < ∞. (2.6)

We replace ((X1,t, X2,t, X3,t),Λt) with ((Xs1,i
1,t , X

s2,i
2,t , X

s3,i
3,t ),Λi

t), especially the initial value

((X0
1 , X

0
2 , X

0
3),Λ0) = ((s1, s2, s3), i).

For any p ∈ (0, 1], we set s := (s1, s2, s3) and define a metric on H3 × S as follows

dp((s, i), (s̄, i)) :=
∫

H3

3∑
k=1

|sk − s̄k|
p + I{i, j}, (s, i), (s̄, i) ∈ H3 × S,

where IA denotes the indicator function of the set A, and s̄ := (s̄1, s̄2, s̄3) is different initial value. For
p ∈ (0, 1], we define the Wassertein distance between ν ∈ P(H3 × S) and ν′ ∈ P(H3 × S) by

Wp(ν, ν′) = inf Edp(Xk, Xk′),

where the infimum is taken over all pairs of random variables Xk, Xk′ on H3 × S with respective laws
ν, ν′. Let Pt((s1, s2, s3), i; ·) be the transition probability kernel of the pair ((Xs1,i

1,t , X
s2,i
2,t , X

s3,i
3,t ),Λi

t), a time
homogeneous Markov process (see [22]). Recall that π ∈ P(H3 × S) is called an invariant measure of
((Xs1,i

1,t , X
s2,i
2,t , X

s3,i
3,t ),Λi

t) if

π(A × {i}) =

N∑
j=1

∫
H3

Pt((s1, s2, s3), j; A × {i})π(d(s1, s2, s3) × { j}), t ≥ 0, A ∈ H3, i ∈ S (2.7)

holds. For any p > 0, let

diag(ρ) , diag(ρ1, . . . , ρN), Qp , Q +
p
2

diag(ρ), ηp , −max
γ

Reγ. (2.8)

where ρi is introduced in the assumptions and γ ∈ spec(Qp), spec(Qp) denotes the spectrum of Qp(i.e.,
the multi-set of its eigenvalues). Reγ is the real part of γ and diag(ρ1, . . . , ρN) denotes the diagonal
matrix whose diagonal entries are ρ1, . . . , ρN , respectively.
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3. Existence and uniqueness of invariant measures

In this section, we mainly prove the existence and uniqueness of the invariant measure for the exact
solution, under the assumption conditions (H1)–(H3). Firstly, in order to prove the existence and
uniqueness of the underlying invariant measure, we prepare the following lemma.

Lemma 3.1. (see [22]) Let N < ∞ and assume further that

N∑
i=1

µiρi < 0, (3.1)

where µi is the stationary distribution of Markov chain {Λt}t≥0, and ρi is introduced in the assumption
(H1). Then
(1) ηp > 0 if max

i∈S
ρi ≤ 0;

(2) ηp > 0 for p < max
i∈S,ρi>0

{−2qii/ρi} if max
i∈S

ρi > 0.

Remark 1: The system (2.1) is said to be attractive ” in average ” if Eq (3.1) holds. The Lemma 3.1
provides great convenience to study the existence and uniqueness of invariant measure for exact
solution, i.e., the proof of Theorem 3.1.

Theorem 3.1. Let N < ∞ and assume further that (H1)–(H3) hold with maxi∈S ρi > 0. Then the exact
solution of system (2.1) admits a unique invariant measure π ∈ P(H3 × S).

Proof. The key point of proof is to divide the whole proof into two parts of existence and uniqueness.
(I) Existence of invariant measure. Let ((Y s1,i

1,t ,Y
s2,i
2,t ,Y

s3,i
3,t ),Λi

t) be the exact solution of system (2.1)
with ((s1, s2, s3), i) as initial value, where ((s1, s2, s3), i) ∈ H3×S. A simple application of the Feynman-
Kac formula show that let Qp,t = etQp , where Qp is given in Eq (2.8). Then, the spectral radius Ria(Qp,t)
(i.e., Ria(Qp,t) = supλ∈spec(Qp,t) |λ|) of Qp,t equals to e−ηpt. Since all coefficients of Qp,t are positive,
by the Perron-Frobenius theorem (see [23]) yields that −ηp is a simple eigenvalue of Qp , all other
eigenvalues have a strictly smaller real part. Note that the eigenvector of Qp,t corresponding to e−ηpt is
also an eigenvector of Qp corresponding to −ηp. According to Perron-Frobenius theorem, for Qp it can
be found that there is a positive eigenvector ξ(p) = (ξ(p)

1 , . . . , ξ
(p)
N ) � 0 corresponding to the eigenvalue

−ηp, and ξ(p) � 0 means that each component ξ(p)
i > 0. Let

p0 = 1 ∧ min
i∈S,ρi>0

{−2qii/ρi}, (3.2)

where 1 ∧ min
i∈S,ρi>0

{−2qii/ρi} := min{1, min
i∈S,ρi>0

{−2qii/ρi}} . Combined with Lemma 3.1, we can get

Qpξ
(p)
i = −ηpξ

(p)
i � 0. (3.3)

In order to investigate the existence and uniqueness of invariant measure for exact solution, we need
to prove the boundedness of exact solution for system (2.1). In other words, we need to prove whether
the following inequality holds.

E(1 + |Y s1,i
1,t |

p + |Y s2,i
2,t |

p + |Y s3,i
3,t |

p) ≤ C.
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First, using the Itô’s formula (see [24], Theorem 1.45 of p.48 ), we can have

eηptE((1 + |Y s1,i
1,t |

2 + |Y s2,i
2,t |

2 + |Y s3,i
3,t |

2)p/2ξ
(p)
Λi

t
)

=(1 + |s1|
2 + |s2|

2 + |s3|
2)

p
2 ξ

p
i + E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{
ηpξ

(p)
Λi
ε

+ (Qξ(p))(Λi
ε)
}
dε +

p
2
E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2 −1ξ

(p)
Λi
ε

{
2〈Y s2,i

2,ε ,K(Λi
ε)Y

s3,i
3,ε

− (l(Λi
ε) + m(Λi

ε))Y
s2,i
2,ε 〉 + 2〈Y s1,i

1,ε , k1∆Y s1,i
1,ε + βY s1,i

1,ε − µY s1,i
1,ε 〉 + 2〈Y s3,i

3,ε ,−M(Λi
ε)Y

s3,i
3,ε

+ uε + k3∆Y s3,i
3,ε 〉 + 2〈Y s2,i

2,ε , k2∆Y s2,i
2,ε 〉

}
dε +

p
2

∫ t

0
eηpεE(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2 −1

× ξ
(p)
Λi
ε

{
(p − 2)(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)−1‖Y s1,i

1,ε ∗ g(ε,Y s1,i
1,ε ,Λ

i
ε)‖

2 + ‖g(ε,Y s1,i
1,ε ,Λ

i
ε)‖

2
}
dε.

Using p(p − 2)/2 < 0, due to p ∈ (0, p0), and combining with the following inequality,∫ t

0

∫
Ω

k(t, x)∆Yk,εYk,εdxdε

= −

∫ t

0

∫
Ω

k(t, x)OYk,εOYk,εdxdε

≤ −k0

∫ t

0
‖Yk,ε‖

2dε, k = 1, 2, 3

(3.4)

where 0 ≤ k0 ≤ k(t, x) < ∞ (k0 is a constant). Further, we have

eηptE((1 + |Y s1,i
1,t |

2 + |Y s2,i
2,t |

2 + |Y s3,i
3,t |

2)p/2ξ
(p)
Λi

t
)

≤(1 + |s1|
2 + |s2|

2 + |s3|
2)

p
2 ξ

(p)
i +

p
2
E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2 −1

{
2〈Y s1,i

1,ε , βY s1,i
1,ε

− µY s1,i
1,ε 〉 + ε1(K(Λi

ε))
2|Y s2,i

2,ε |
2 +

1
ε1
|Y s3,i

3,ε |
2 + 2(l(Λi

ε) + m(Λi
ε))|Y

s2,i
2,ε |

2 + ε2|Y
s3,i
3,ε |

2 +
1
ε2
|uε |2

+ 2M̄|Y s3,i
3,ε |

2
}
ξ

(p)
Λi
ε
dε +

p
2

∫ t

0
eηpεE(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2 −1‖g(s,Y s1,i

1,ε ,Λ
i
ε)‖

2ξ
(p)
Λi
ε
dε

+ E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{
ηpξ

(p)
Λi
ε

+ (Qξ(P))(Λi
ε)
}
dε.

Therefore, based on assumption conditions (H1)–(H3) and the inequality 2ab ≤ εa2 + 1
ε
b2, ε > 0 we

can obtain

eηptE((1 + |Y s1,i
1,t |

2 + |Y s2,i
2,t |

2 + |Y s3,i
3,t |

2)p/2ξ
(p)
Λi

t
)

≤(1 + |s1|
2 + |s2|

2 + |s3|
2)

p
2 ξ

(p)
i +

p
2
E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2 −1

{
c + [2(β̄

− µ0) + ρΛi
ε
]|Y s1,i

1,ε |
2 + [2(l(Λi

ε) + m(Λi
ε)) + ε1K̄2]|Y s2,i

2,ε |
2 + [2M̄ +

1
ε2

+
1
ε1

]|Y s3,i
3,ε |

2 + ε2|uε |2
}
dε

+ E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{
ηpξ

(p)
Λi
ε

+ (Qξ(P))(Λi
ε)
}
dε,

where K̄ := max
i
{K(Λi)}, for all i ∈ S, 0 < K̄ < ∞. Then, setting C1 := 2(β̄ − µ0) + ρ0, ρ0 := max

i∈S
|ρΛi

ε
|

C2 := max
i∈S

2(l(Λi
ε) + m(Λi

ε)) + ε1K̄2 and C3 := 2M̄ + 1
ε2

+ 1
ε1

, C4 := ε2 + c are different constants and
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using the inequality

(|a| + |b|)r ≤ 2r−1(|a|r + |b|r), r ≥ 1, ∀a, b ∈ R, (3.5)

we can further estimate

eηptE((1 + |Y s1,i
1,t |

2 + |Y s2,i
2,t |

2 + |Y s3,i
3,t |

2)p/2ξ
(p)
Λi

t
)

≤c(1 + |s1|
p + |s2|

p + |s3|
p) + E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{
ηpξ

(p)
Λi

s
+ (Qξ(P))(Λi

ε)
}
dε

+
p
2
E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{ C1|Y
s1,i
1,ε |

2 + C2|Y
s2,i
2,ε |

2

(1 + |Y s1,i
1,ε |

2 + |Y s2,i
2,ε |

2 + |Y s3,i
3,ε |

2)

}
dε

+
p
2
E

∫ t

0
eηpε(1 + |Y s1,i

1,ε |
2 + |Y s2,i

2,ε |
2 + |Y s3,i

3,ε |
2)

p
2

{ C3|Y
s3,i
3,ε |

2 + C4|uε |2

(1 + |Y s1,i
1,ε |

2 + |Y s2,i
2,ε |

2 + |Y s3,i
3,ε |

2)

}
dε.

Finally, by the Gronwall’s lemma, we can get the result

eηptE((1 + |Y s1,i
1,t |

2 + |Y s2,i
2,t |

2 + |Y s3,i
3,t |

2)p/2ξ
(p)
Λi

t
) ≤ CeCT , (3.6)

and further estimates can be obtained as follows

sup
t≥0
E((|Y s1,i

1,t |
p + |Y s2,i

2,t |
p + |Y s3,i

3,t |
p) ≤ C. (3.7)

For ∀ t > 0, we can define a probability measure

χt(A) =
1
t

∫ t

0
Pε(s, i; A)dε, A ∈ (H3 × S).

Then, let Y s,i
t := (Y s1,i

1,t ,Y
s2,i
2,t ,Y

s3,i
3,t ), for any ε > 0, by Eq (3.7) and Chebyshev’s inequality, there exists

an r > 0 sufficiently large such that

χt(Kr × S) =
1
t

∫ t

0
Pε(s, i; Kr × S)dε ≥ 1 −

supt≥0(E|Y s,i
t |

p)
rp ≥ 1 − ε. (3.8)

Hence, χt is tight since the compact embedding V b H, then Kr = {s ∈ H3; |s| ≤ r} is a compact subset
of H3 (see [25], Definition 2, p.27 ) for each i ∈ S. Combined with the Fellerian property of transition
seimgroup for Pt(s, i; ·) and according to Krylov-Bogoliubov theorem (see [26]), ((Y s1,i

1,t ,Y
s2,i
2,t ,Y

s3,i
3,t ),Λi

t)
has an invariant measure (see [27]). Next, we prove the uniqueness of the invariant measure for
((Y s1,i

1,t ,Y
s2,i
2,t ,Y

s3,i
3,t ),Λi

t).
(II) Uniqueness of invariant measure. First, let ((Y s1,i

1,t ,Y
s2,i
2,t ,Y

s3,i
3,t ),Λi

t) and ((Y s̄1,i
1,t ,Y

s̄2,i
2,t ,Y

s̄3,i
3,t ),Λi

t) be
the solutions of the system (2.1) satisfying the initial values ((s1, s2, s3), i) and ((s̄1, s̄2, s̄3), i),
respectively. Under assumption conditions (H1)–(H3), we take ∀ε ∈ (0, 1) and use Itô’s formula,
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combined with Eq (3.4), we have

eηptE((ε + |Y s1,i
1,t − Y s̄1,i

1,t |
2 + |Y s2,i

2,t − Y s̄2,i
2,t |

2 + |Y s3,i
3,t − Y s̄3,i

3,t |
2)p/2ξ

(p)
Λi

t
)

≤(ε + |s1 − s̄1|
2 + |s2 − s̄2|

2| + |s3 − s̄3|
2|)p/2ξ

(p)
i

+
p
2
E

∫ t

0
eηpε(ε + |Y s1,i

1,ε − Y s̄1,i
1,ε |

2 + |Y s2,i
2,ε − Y s̄2,i

2,ε |
2 + |Y s3,i

3,ε − Y s̄3,i
3,ε |

2)p/2−1ξ
(p)
Λi
ε

×

{
[2(β̄ − µ0) + ρΛi

ε
]|Y s1,i

1,ε − Y s̄1,i
1,ε |

2 + ε1K̄2|Y s2,i
2,ε − Y s̄2,i

2,ε |
2 + [

1
ε1

+
1
ε2

+ 2M̄]|Y s3,i
3,ε − Y s̄3,i

3,ε |
2

+ 2(l(Λi
ε) + m(Λi

ε))|Y
s2,i
2,ε − Y s̄2,i

2,ε |
2 + ε2|us3,i

ε − us̄3,i
ε |

2
}
dε

≤(ε + |s1 − s̄1|
2 + |s2 − s̄2|

2| + |s3 − s̄3|
2)p/2ξ

(p)
i

+
p
2
E

∫ t

0
eηpε(ε + |Y s1,i

1,ε − Y s̄1,i
1,ε |

2 + |Y s2,i
2,ε − Y s̄2,i

2,ε |
2 + |Y s3,i

3,ε − Y s̄3,i
3,ε |

2)p/2ξ
(p)
Λi
ε

×

{C1|Y
s1,i
1,ε − Y s̄1,i

1,ε |
2 + C2|Y

s2,i
2,ε − Y s̄2,i

2,ε |
2 + C3|Y

s3,i
3,ε − Y s̄3,i

3,ε |
2 + ε2|u

s3,i
ε − us̄3,i

ε |
2

ε + |Y s1,i
1,ε − Y s̄1,i

1,ε |
2 + |Xs2,i

2,ε − X s̄2,i
2,ε |

2 + |Xs3,i
3,ε − X s̄3,i

3,ε |
2

}
dε,

where Ci, i = 1, 2, 3 have been explained before and ρΛi
ε

is introduced in the assumption (H1). In
addition, using the result of Eqs (3.5) and (3.6), we can get

eηptE((ε + |Y s1,i
1,t − Y s̄1,i

1,t |
2 + |Y s2,i

2,t − Y s̄2,i
2,t |

2 + |Y s3,i
3,t − X s̄3,i

3,t |
2)p/2ξ

(p)
Λi

t
)

≤(ε + |s1 − s̄1|
2 + |s2 − s̄2|

2 + |s3 − s̄3|
2)p/2ξ

(p)
i

+
p
2

CE
∫ t

0
eηpε(ε + |Y s1,i

1,ε − Y s̄1,i
1,ε |

2 + |Y s2,i
2,ε − X s̄2,i

2,ε |
2 + |Xs3,i

3,ε − X s̄3,i
3,ε |

2)p/2ξ
(p)
Λi
ε

×

{
1 − ε(ε + |Y s1,i

1,ε − Y s̄1,i
1,ε |

2 + |Y s2,i
2,ε − Y s̄2,i

2,ε |
2 + |Xs3,i

3,ε − X s̄3,i
3,ε |

2)−1
}
dε

≤(ε + |s1 − s̄1|
2 + |s2 − s̄2|

2| + |s3 − s̄3|
2)p/2ξ

(p)
i + Cεp/2eηpt,

(3.9)

when ε→ 0, we can get the following result

E(|Y s1,i
1,t − Y s̄1,i

1,t |
p + |Y s2,i

2,t − Y s̄2,i
2,t |

p + |Y s3,i
3,t − Y s̄3,i

3,t |
p)

≤C(|s1 − s̄1|
p + |s2 − s̄2|

p + |s3 − s̄3|
p)e−ηpt.

(3.10)

Define the stopping time

τ = inf{t ≥ 0 : Λi
t = Λ

j
t }.

According to the definition of S and irreducibility of Q, there exists θ > 0 such that

P(τ > t) ≤ e−θt, t > 0. (3.11)

Due to p ∈ (0, p0), and choose q > 1 such that 0 < pq < p0, where p0 is introduced in Eq (3.2).
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Using Hölder’s inequality, we can have

E(|Y s1,i
1,t − Y s̄1, j

1,t |
p + |Y s2,i

2,t − Y s̄2, j
2,t |

p + |Y s3,i
3,t − Y s̄3, j

3,t |
p)

=E(|Y s1,i
1,t − Y s̄1, j

1,t |
p1{τ>t/2}) + E(|Y s1,i

1,t − Y s̄1, j
1,t |

p1{τ≤t/2}) + E(|Y s2,i
2,t − Y s̄2, j

2,t |
p1{τ>t/2})

+ E(|Y s2,i
2,t − Y s̄2, j

2,t |
p1{τ≤t/2}) + E(|Y s3,i

3,t − Y s̄3, j
3,t |

p1{τ>t/2}) + E(|Y s3,i
3,t − Y s̄3, j

3,t |
p1{τ≤t/2})

≤(E|Y s1,i
1,t − Y s̄1, j

1,t |
pq1{τ>t/2})1/q(P(τ > t/2))1/p + E(1{τ≤t/2}E|Y

Y s1 ,i
1,τ ,Λ

i
τ

1,t−τ − Y
Y s̄1 , j

1,τ ,Λ
j
τ

1,t−τ |
p)

+ (E|Y s2,i
2,t − Y s̄2, j

2,t |
pq1{τ>t/2})1/q(P(τ > t/2))1/p + E(1{τ≤t/2}E|Y

Y s2 ,i
2,τ ,Λ

i
τ

2,t−τ − Y
Y s̄2 , j

2,τ ,Λ
j
τ

2,t−τ |
p)

+ (E|Y s3,i
3,t − Y s̄1, j

3,t |
pq1{τ>t/2})1/q(P(τ > t/2))1/p + E(1{τ≤t/2}E|Y

Y
s3 ,i
3,τ ,Λ

i
τ

3,t−τ − Y
Y

s̄3 , j
1,τ ,Λ

j
τ

3,t−τ |
p).

(3.12)

Applying the result of Eq (3.11), we further obtain

E(|Y s1,i
1,t − Y s̄1, j

1,t |
p + |Y s2,i

2,t − Y s̄2, j
2,t |

p + |Y s3,i
3,t − Y s̄3, j

3,t |
p)

≤e−
q−1
2q θt(E|Y s1,i

1,t − Y s̄1, j
1,t |

pq)
1
q + CE(1{τ≤t/2}e−ηp(t−τ)E|Y s1,i

1,τ − Y s̄1, j
1,τ |

p)

+ e−
q−1
2q θt(E|Y s2,i

2,t − Y s̄2, j
2,t |

pq)
1
q + CE(1{τ≤t/2}e−ηp(t−τ)E|Y s2,i

2,τ − Y s̄2, j
2,τ |

p)

+ e−
q−1
2q θt(E|Y s3,i

3,t − Y s̄3, j
3,t |

pq)
1
q + CE(1{τ≤t/2}e−ηp(t−τ)E|Y s3,i

3,τ − X s̄3, j
3,τ |

p)

≤e−
q−1
2q θt(E|Y s1,i

1,t − Y s̄1, j
1,t |

pq)
1
q + Ce−

ηp
2 tE|Y s1,i

1,τ − Y s̄1, j
1,τ |

p + e−
q−1
2q θt(E|Y s2,i

2,t − Y s̄2, j
2,t |

pq)
1
q

+ Ce−
ηp
2 tE|Y s2,i

2,τ − Y s̄2, j
2,τ |

p + e−
q−1
2q θt(E|Y s3,i

3,t − Y s̄3, j
3,t |

pq)1/q + Ce−
ηp
2 tE|Y s3,i

3,τ − Y s̄3, j
3,τ |

p

≤C(1 + |s1|
p + |s̄1|

p + |s2|
p + |s̄2|

p + |s3|
p + |s̄3|

p)e−σt,

(3.13)

where σ := (q−1)θ
2q ∧

ηp

2 , and in the last step, it follows from Eqs (3.7) and (3.10) such that

sup
t≥0
E(|Y s1,i

1,t |
pq + |Y s2,i

2,t |
pq + |Y s3,i

3,t |
pq) ≤ C,

and
sup
t≥0
E(|Y s̄1, j

1,t |
pq + |Y s̄2, j

2,t |
pq + |Y s̄3, j

3,t |
pq) ≤ C.

Thus, we also have assertion

lim
t→∞
E(|Y s1,i

1,t − Y s̄1, j
1,t |

p + |Y s2,i
2,t − Y s̄2, j

2,t |
p + |Y s3,i

3,t − Y s̄3, j
3,t |

p) = 0.

Then, according to Eq (3.11), we can get

P(Λi
t , Λ

j
t ) = P(τ > t) ≤ e−θt t > 0. (3.14)

Next, according to Eqs (3.14) and (3.13) that

Wp(δ((s1,s2,s2),i)Pt, δ((s̄1,s̄2,s̄3), j)Pt)

≤ E(|Y s1,i
1,t − Y s̄1, j

1,t |
p + |Y s2,i

2,t − Y s̄2, j
2,t |

p + |Y s3,i
3,t − Y s̄3, j

3,t |
p) + P(Λi

t , Λ
j
t )

≤ C(1 + |s1|
p + |s̄1|

p + |s2|
p + |s̄2|

p + |s3|
p + |s̄3|

p)e−σt + e−θt

≤ Ce−σ
∗t,

(3.15)
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where σ∗ := σ∧ θ. Assume π, ν ∈ P(H3×S) are invariant measures of ((Y s1,i
1,t ,Y

s2,i
2,t ,Y

s3,i
3,t ),Λi

t), it follows
from Eq (3.15) that

Wp(π, ν) = Wp(πPt, νPt)

≤

N∑
i, j=1

∫
H3×S

∫
H3×S

π(d(s1, s2, s3) × {i})ν(d(s̄1, s̄2, s̄3) × { j})Wp(δ((s1,s2,s3),i)Pt, δ((s̄1,s̄2,s̄3), j)Pt).

When t → ∞, we find Wp(π, ν) → 0. Hence, uniqueness of invariant measure follows immediately.
The proof of Theorem 3.1 has been completed.

In the following section, we will investigate existence and uniqueness of numerical invariant
measure and prove the convergence of numerical invariant measure.

4. Numerical invariant measure

In this section, we mainly discuss existence and uniqueness of numerical invariant measure for
system (2.1) under the assumption conditions (H1)–(H3). In order to facilitate the discussion, we
consider the numerical solution in the discrete-time for system (2.1). For a given step size δ ∈ (0, 1),
we define the discrete-time Euler-Maruyama (EM) scheme associated with model (2.1) as follows

X̄s1,i
1,(n+1)δ = X̄s1,i

1,nδ + [k1(nδ, x)∆X̄s1,i
1,nδ + β(nδ, x, X̄s2,i

2,nδ,Λ
i
nδ)X̄

s1,i
1,nδ]δ

− µ(nδ, x, X̄s2,i
2,nδ,Λ

i
nδ)X̄

s1,i
1,nδδ + g(nδ, X̄s1,i

1,nδ,Λ
i
nδ)∆Wn,

X̄s2,i
2,(n+1)δ = X̄s2,i

2,nδ + [k2(nδ, x)∆X̄s2,i
2,nδ + K(Λi

nδ)X̄
s3,i
3,nδ − (l(Λi

nδ) + m(Λi
nδ))X̄

s2,i
2,nδ]δ,

X̄s3,i
3,(n+1)δ = X̄s3,i

3,nδ + [k3(nδ, x)∆X̄s3,i
3,nδ − M(Λi

nδ)X̄
s3,i
3,nδ + u(nδ, x)]δ,

(4.1)

where n ≥ 0 and ∆Wn , W(n+1)δ − Wnδ denotes Brownian motion increment, ∆X̄sk ,i
k,nδ is the Laplace

of X̄sk ,i
k,nδ, with the initial data ((X̄0

1 , X̄
0
2 , X̄

0
3),Λ0) = ((s1, s2, s3), i) ∈ H3 × S which is introduced before.

Equations (4.1) and (4.2) are the discrete-time EM scheme and continuous-time EM scheme of the
corresponding system (2.1), respectively. For convenience, we define the corresponding approximate
solution to the system (2.1) on continuous time.

Xs1,i
1,t = s1 +

∫ t

0
[k1(bε/δcδ, x)∆X̄s1,i

1,bε/δcδ + β(bε/δcδ, x, X̄s2,i
2,bε/δcδ,Λ

i
bε/δcδ)X̄

s1,i
1,bε/δcδ]dε

−

∫ t

0
µ(bε/δcδ, x, X̄s2,i

2,bε/δcδ,Λ
i
bε/δcδ)X̄

s1,i
1,bε/δcδdε +

∫ t

0
g(bε/δcδ, X̄s1,i

1,bε/δcδ,Λ
i
bε/δcδ)dWε ,

Xs2,i
2,t = s2 +

∫ t

0
[k2(bε/δcδ, x)∆X̄s2,i

2,bε/δcδ + K(Λi
bε/δcδ)X̄

s3,i
3,bε/δcδ]dε

−

∫ t

0
(l(Λi

bε/δcδ) + m(Λi
bε/δcδ))X̄

s2,i
2,bε/δcδdε,

Xs3,i
3,t = s3 +

∫ t

0
[k3(bε/δcδ, x)∆X̄s3,i

3,bε/δcδ − M(Λi
bε/δcδ)X̄

s3,i
3,bε/δcδ + u(bε/δcδ, x)]dε,

(4.2)

where t > 0,Λi
0 = i ∈ S, ∀b ≥ 0, bbc is the interger part of b. Obviously, by a straightforward

calculation, we can have (Xs1,i
1,bε/δcδ, X

s2,i
2,bε/δcδ, X

s3,i
3,bε/δcδ) = (X̄s1,i

1,bε/δcδ, X̄
s2,i
2,bε/δcδ, X̄

s3,i
3,bε/δcδ).
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Let Pδnδ((s1, s2, s3), j; ·) be the transition probability kernel of ((X̄s1,i
1,nδ, X̄

s2,i
2,nδ, X̄

s3,i
3,nδ),Λ

i
nδ). If πδ ∈ P(H3×

S) satisfies the following equation

πδ(A × {i}) =

N∑
j=1

∫
H3

Pδnδ((s1, s2, s3), j; A × {i})πδ(d(s1, s2, s3) × { j}), t ≥ 0, A ∈ H3, i ∈ S, (4.3)

then we call πδ ∈ P(H3 × S) an invariant measure of ((X̄s1,i
1,nδ, X̄

s2,i
2,nδ, X̄

s3,i
3,nδ),Λ

i
nδ) or a numerical invariant

measure of ((Xs1,i
1,t , X

s2,i
2,t , X

s3,i
3,t ),Λi

t). Let

q0 := max
i∈S

(−qii), ρ0 = max
i∈S
|ρi|, ξ̂0 , max

i∈S
ξ

(p)
i , ξ̆0 , (max

i∈S
ξ

(p)
i )−1.

Our main result in this section is as follows

Lemma 4.1. Under the conditions of Lemma 3.1 and combining Eq (3.2) with (3.3), it holds that

E(|X̄s1,i
1,nδ − X̄ s̄1, j

1,nδ|
p + |X̄s2,i

2,nδ − X̄ s̄2, j
2,nδ|

p + |X̄s3,i
3,nδ − X̄ s̄3, j

3,nδ|
p)

≤ C(1 + |s1|
p + |s2|

p + |s3|
p + |s̄1|

p + |s̄2|
p + |s̄3|

p)e−ηpnδ,
(4.4)

for any p ∈ (0, p0), (s, i) = ((s1, s2, s3), i), (s̄, j) = ((s̄1, s̄2, s̄3), j) ∈ H3 × S. p0 is given in Eq (3.2).

Lemma 4.1 shows that numerical solution (X̄s1,i
1,nδ, X̄

s2,i
2,nδ, X̄

s3,i
3,nδ) tends to (X̄ s̄1, j

1,nδ, X̄
s̄2, j
2,nδ, X̄

s̄3, j
3,nδ) when n→ ∞

and δ → 0 under different initial values and states. This lemma provides a great convenience for
the proof of Theorem 4.1. Applying a method similar to Theorem 3.1 can prove the conclusion of
Lemma 4.1, so it is omitted.

Theorem 4.1. Under the conditions of Theorem 3.1, there exists a sufficiently small δ∗ such that for any
δ ∈ (0, δ∗), the solutions of the EM method (4.2) converge to a unique invariant measure πδ ∈ P(H3×S)
with some exponential rate γ̄ > 0 in the Wassertein distance.

Proof. In fact, for any the initial data (s1, s2, s3), by Eq (4.2) and the Chebyshev’s inequality, we derive
that {δ(s1,s2,s3)P

δ
nδ} is tight. Therefore, there exists an exact subsequence which converges weakly to an

invariant measure denoted by πδ ∈ P(H3×S). According to the Eq (3.14), we have the following result

P(Λi
nδ , Λ

j
nδ) = P(τδ > n) ≤ e−θnδ. (4.5)

For any n > 0, combining with Eq (4.4), it is not difficult to get

Wp(δ((s1,s2,s2),i)P
δ
nδ, δ((s̄1,s̄2,s̄3), j)P

δ
nδ)

≤ E(|X̄s1,i
1,nδ − X̄ s̄1, j

1,nδ|
p + |X̄s2,i

2,nδ − X̄ s̄2, j
2,nδ|

p + |X̄s3,i
3,nδ − X̄ s̄3, j

3,nδ|
p) + P(Λi

nδ , Λ
j
nδ)

≤ C(1 + |s1|
p + |s2|

p + |s3|
p + |s̄1|

p + |s̄2|
p + |s̄3|

p)e−γ̄nδ,

(4.6)

where γ̄ := % ∧ θ, and using the Kolmogorov-Chapman equation and Eq (4.6), for any n,m > 0, we
have

Wp(δ((s1,s2,s2),i)P
δ
nδ, δ((s1,s2,s2),i)P

δ
(n+m)δ)

= Wp(δ((s1,s2,s2),i)P
δ
nδ, δ((s1,s2,s2),i)P

δ
nδP

δ
mδ)

≤

∫
H3×S

Wp(δ((s1,s2,s2),i)P
δ
nδ, δ((s̄1,s̄2,s̄3), j)P

δ
nδ)P

δ
mδ((s1, s2, s2), i; d(s̄1, s̄2, s̄3), j)

≤
∑
j∈S

∫
H3

C(1 + |s1|
p + |s2|

p + |s3|
p + |s̄1|

p + |s̄2|
p + |s̄3|

p)e−γ̄nδH1

≤ Ce−γ̄nδ,

(4.7)
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where H1 = Pδmδ((s1, s2, s2), i; d(s̄1, s̄2, s̄3), j), then taking m→ ∞ such that

Wp(δ((s1,s2,s2),i)P
δ
nδ, π

δ)→ 0, n→ ∞, (4.8)

in other words, πδ is the unique invariant measure of {δ(s1,s2,s3)P
δ
nδ}. ∀π

δ, νδ ∈ P(H3 × S) are invariant
measures of ((X̄s1,i

1,nδ, X̄
s2,i
2,nδ, X̄

s3,i
3,nδ),Λ

i
nδ) and ((X̄ s̄1, j

1,nδ, X̄
s̄2, j
2,nδ, X̄

s̄3, j
3,nδ),Λ

j
nδ), respectively. Further, we have

Wp(πδ, νδ) = Wp(πδPδnδ, ν
δPδnδ)

≤

N∑
i, j=1

∫
H3×S

∫
H3×S

πδ(d(s1, s2, s3) × {i})νδ(d(s̄1, s̄2, s̄3) × { j})Wp(δ((s1 ,s2 ,s3),i)P
δ
nδ, δ((s̄1 ,s̄2 ,s̄3), j)P

δ
nδ).

(4.9)

The uniqueness for the numerical invariant measure have been completed. Therefore, the proof of
Theorem 4.1 is complete.

To show that the numerical invariant measure πδ converges to the invariant measure of the
corresponding exact solution under the Wasserstein distance, the following theorem is given.

Theorem 4.2. Under the assumptions of Theorem 4.1 and Eq (4.8), for δ ∈ (0, 1) there exists C > 0
such that

Wp(π, πδ) ≤ Cδ
p
2 , p ∈ (0, p0),

where p0 > 0 is defined in Eq (3.2).

Proof. For p ∈ (0, p0), due to

Wp(δ((s1,s2,s2),i)Pnδ, π) ≤
∫

H3×S
π(d(s̄1, s̄2, s̄3) × { j})Wp(δ((s1,s2,s2),i)P

δ
nδ, δ((s̄1,s̄2,s̄3), j)Pδ

nδ),

and
Wp(δ((s1,s2,s2),i)P

δ
nδ, π

δ) ≤
∫

H3×S
π(d(s̄1, s̄2, s̄3) × { j})Wp(δ((s1,s2,s2),i)P

δ
nδ, δ((s̄1,s̄2,s̄3), j)Pδ

nδ).

Then based on the assumption conditions of (H1)–(H3) and Eq (4.8), there exists a sufficiently small
δ∗ such that for any δ ∈ (0, δ∗), there is n > 0 sufficiently large such that

Wp(δ((s1,s2,s2),i)Pnδ, π) + Wp(δ((s1,s2,s2),i)P
δ
nδ, π

δ) ≤ Cδ
p
2 , (4.10)

For fixed n > 0 and using the triangle inequality, and by the similar way of [22], we can obtain
lim
δ→0

Wp(δ((s1,s2,s2),i)Pnδ, δ((s1,s2,s2),i)P
δ
nδ) = 0. In other words, there exists a positive constant ν̄ such that

Wp(δ((s1,s2,s2),i)Pnδ, δ((s1,s2,s2),i)P
δ
nδ) ≤ Ceν̄δnδ

p
2 . According to Theorem 3.1 and Eq (4.8), we can get the

following result
Wp(δ((s1,s2,s2),i)Pnδ, π) + Wp(δ((s1,s2,s2),i)P

δ
nδ, π

δ) ≤ Ce−γ
∗nδ, (4.11)

where γ∗ := σ∗ ∧ γ̄. Let C̄ be the integer part of constant −p ln δ/[2(ν̄ + γ∗)δ], obviously, C̄ → 0 as
δ→ 0. On the other hand, we have eν̄C̄δδ

p
2 ≤ δ

pσ∗

2(ν̄+γ∗) ≤ δ
p
2 , e−σ

∗C̄δ ≤ eγ
∗δ∗δ

p
2 . Therefore, Wp(π, πδ) ≤ Cδ

p
2

holds.

Further, to illustrate the validity of our theory which are discussed in the previous section, we will
give a numerical example.
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5. Numerical examples

Let Λt be a Markov chain with the state space S = {1, 2}, and the generator

Γ =

(
3 −3
−4 4

)
.

It is easy to show that its unique stationary distribution π = (π1, π2) is given by π1 = 1/2, π1 = 1/2.
On the other hand, we give the following setting: V(Λt) := l(Λt) + m(Λt), when Λt = 1, we choose
M(1) = 1

2 exp( 2
1+2t ), K(1) = 0.01 sin( 1

(3+0.2t)2 ) and V(1) = l(1) + m(1) = 1.99; when Λt = 2, we choose
M(2) = 9

10 ( 1
1+t ), K(2) = 0.05 sin( 1

(3+0.2t)2 ) and V(2) = l(2) + m(2) = 1.6. In the state 1 and 2, setting
T = 1 , t ∈ (0, 1), β := β(t, x, X2(t, x),Λt) = 1

2 (1 − 0.5X2(t,x)
0.5(1+X2(t,x)) )(1 −

x
5+x ), µ := µ(t, x, X2(t, x),Λt) =

3
10 (0.5 − 0.8X2(t,x)

1+0.5X2(t,x) )(1 −
x

0.5+x ), g := g(t, x, X1(t, x),Λt) = 0.05 + 0.3X1(t, x), and taking k1 = 0.005,
k2 = k3 = 0.05, s1(x) = s2(x) = 0.2

(1+x)2 , s3(x) = 0.2
(1+1.5x)2 , the system (2.1) is described as follows

dX1(t, x) = [0.005∆X1(t, x) + βX1(t, x) − µX1(t, x)]dt + gdWt, in (0,T ) × Γ,

dX2(t, x) = [0.05∆X2(t, x) + K(Λt)X3(t, x) − V(Λt)X2(t, x)]dt, in (0,T ) × Γ,

dX3(t, x) = [0.05∆X3(t, x) − M(Λt)X3(t, x) + u(t, x)]dt, in (0,T ) × Γ,

X1(0, x) = X2(0, x) =
0.2

(1 + x)2 , X3(0, x) =
0.2

(1 + 1.5x)2 , in x ∈ Γ,

X1(t, x) = 0, X2(t, x) = 0, X3(t, x) = 0, on (0,T ] × ∂Γ,

(5.1)

First, for the system (5.1), we use the discrete-time EM method for numerical simulation. Figure 1 is
a simulation of Markov chain which describes switching between different states.

20 40 60 80 100

t(time)

1

1.2

1.4

1.6

1.8

2

Λ
t

Figure 1. simulation of a single path of Markov chain Λt

Then, taking T = 1, N = 100, |Wi+1 − Wi| =
√
δ and t ∈ (0, 1), step sizes δ = 0.005. Among

them, the values of X3(t, x) and X2(t, x) do not exceed 0.4. This satisfies the practical significance, i.e.,
0 ≤ X2(t, x) ≤ 1, 0 ≤ X3(t, x) ≤ 1.
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As far as we know, the exact solution for system (5.1) is difficult to find. Inspired by [30] and
based on the method of [28], we can take the “explicit solution” Y1(t, x) = exp(1

2 −
1

1−x −
t2
2 )(1 + ∆W),

Y2(t, x) = K
∫ t

0
Y3(t, x) exp{(l+m)(s− t)}ds+CY2 exp{−(l+m)t} and Y3(t, x) =

∫ t

0
u(t, x) exp{h(s− t)}ds+

CY3 exp{−ht} replace exact solution, where CY2 ,CY3 are initial values of Y2 and Y3, respectively. Setting
CY3 = 0.2

(1+1.5x)2 , CY2 = 0.2
(1+x)2 , K = 0.05, l + m = 1.9 and h = 0.5, u(t, x) = 1

5 ( 4
(1+2x)2 −

1
2 )(1− t)3. Then, The

simulation results are presented separately in Figure 2(a), Figure 4(a) and Figure 6(a). In Figure 6(b)
and Figure 4(b) reflect the numerical simulation of X3(t, x) and X2(t, x) with Markov switching when
the step size is 0.005 under the state “1” and “2” switching.

In addition, Figure 7, Figure 5 and Figure 3 show mean-square error between “explicit solutions
Y3, Y2 and Y1” and the corresponding numerical solutions X3, X2 and X1(Figure 6(b), Figure 4(b) and
Figure 2(b)) of stochastic population with diffusion and Markov switching in a polluted environment
system (5.1), when we take step sizes δ = 0.005, 0.0001. Obviously, when the step size δ changes
from 0.005 to 0.0001, the error values decreases from 0.14, 0.4 and 0.04 to 0.012, 0.025 and 0.02,
respectively. Combining Figure 7, Figure 5 and Figure 3 , we have the assertion that the smaller the
step size, the smaller the error. Hence, it is not difficult to conclude that when δ → 0, the numerical
solution X3(t, x), X2(t, x), X1(t, x) under discrete-time EM method converges to the explicit solution
Y3(t, x), Y2(t, x), Y1(t, x), respectively.
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Figure 2. (a) is numerical simulation of “explicit solution” Y1(t, x) for system (5.1); (b) is
numerical simulation of EM numerical solution X1(t, x) for system (5.1) (when δ = 0.005).
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Figure 3. Mean-square error simulation between EM numerical solution for X1(t, x) and
“explicit solution” Y1(t, x) under step size δ = 0.005, 0.0001, respectively.
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Figure 4. (a) “explicit solution” Y2(t, x) for system (5.1); (b) is a simulation of EM numerical
solution X2(t, x) under the state ”Λt = 1 and Λt = 2” switching (when δ = 0.005).
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Figure 5. Mean-square error simulation between EM numerical solution X2(t, x) and
“explicit solution” Y2(t, x) different step size δ = 0.005, 0.0001, respectively.
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Figure 6. (a) “explicit solution” Y3(t, x) ; (b) is a simulation of EM numerical solution X3(t, x)
under the state “Λt = 1 and Λt = 2” switching (when δ = 0.005).
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Figure 7. Mean-square error simulation between EM numerical solution for X3(t, x) and
“explicit solution” Y3(t, x) under step size δ = 0.005, 0.0001, respectively.

6. Concluding remarks

In this paper, we establish a new stochastic population model with Markov chain and diffusion
in a polluted environment. Based on the Perron-Frobenius theorem, when the diffusion coefficient
satisfies the local Lipschitz, the criterion on the existence and uniqueness of invariant measure for
the exact solution is given. Moreover, we also discuss the existence and uniqueness of numerical
invariance measure for model (2.1) under the discrete-time Euler-Maruyama scheme, and prove that
numerical invariance measure converges to invariance measure of the corresponding exact solution
in the Wasserstein distance sense. At the end of this paper, the accuracy of the theoretical results is
verified by numerical simulation.
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