
Mathematical Biosciences and Engineering, 2020, 17(6): 66596677. doi: 10.3934/mbe.2020346.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A 6point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems
1 Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
2 Department of Mathematics, Cankaya University, Ankara 06530, Turkey
3 Institute of Space Sciences, 077125 MagureleBucharest, Romania
4 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
5 Department of Mathematics, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
6 Institute of IR 4.0, The National University of Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
7 Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
8 Department of Law, Economics and Human Sciences & Decisions Lab, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
Received: , Accepted: , Published:
Special Issues: Numerical Linear Algebra for LargeScale Dynamical Systems
Keywords: subdivision schemes; interpolation; approximation; Singularly perturbed boundary value problem; iterative algorithm
Citation: Ghulam Mustafa, Dumitru Baleanu, Syeda Tehmina Ejaz, Kaweeta Anjum, Ali Ahmadian, Soheil Salahshour, Massimiliano Ferrara. A 6point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems. Mathematical Biosciences and Engineering, 2020, 17(6): 66596677. doi: 10.3934/mbe.2020346
References:
 1. G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5(1989) 4968.
 2. A. Weissman, A 6point interpolatory subdivision scheme for curve design, M.S. thesis, TelAviv University, Tel Aviv, Israel, 1990.
 3. B. G. Lee, Y. J. Lee, J. Yoon, Stationary binary subdivision schemes using radial basis function interpolation, Adv. Comput. Math., 25 (2006), 5772.
 4. K. P. Ko, B. G. Lee, G. J. Yoon, A study on the mask of interpolatory symmetric subdivision schemes, Appl. Math. Comput., 187 (2007), 609621.
 5. J. A. Lian, On aary subdivision for curve design: i. 4point and 6point interpolatory schemes, Appl. Appl. Math., 3 (2008), 1829.
 6. G. Mustafa, P. Ashraf, A new 6point ternary interpolating subdivision scheme and its differentiability, J. Inf. Comput. Sci., 5 (2010), 199210.
 7. G. Mustafa, J. Deng, P. Ashraf, N. A. Rehman, The mask of odd point nary interpolating subdivision scheme, J. Appl. Math., Article ID 205863, 2012 (2012).
 8. G. Kanwa, A. Ghaffar, M. M. Hafeezullah, S. A. Manan, M. Rizwan, G. Rahman, Numerical solution of 2point boundary value problem by subdivision scheme, Commun. Math. Appl., 10(1) (2019), 1929.
 9. G. Mustafa, S. T. Ejaz, Numerical solution of two point boundary value problems by interpolating subdivision schemes, Abstr. Appl. Anal., 2014 (2014).
 10. R. Qu, R. P. Agarwal, Solving two point boundary value problems by interpolatory subdivision algorithms, Int J. Comput. Math., 60 (1996), 279294.
 11. S. A., Manan, A. Ghaffar, M. Rizwan, G. Rahman, G. Kanwal, A subdivision approach to the approximate solution of 3rd order boundary value problem, Commun. Math. Appl., 9 (2018), 499512.
 12. S. T. Ejaz, G. Mustafa, F. Khan, Subdivision schemes based collocation algorithms for solution of fourth order boundary value problems, Math. Probl. Eng., 2015, Article ID 240138, (2015).
 13. G. Mustafa, M. Abbas, S. T. Ejaz, A. I. Md Ismail, F. Khan, A numerical approach based on subdivision schemes for solving nonlinear fourth order boundary value problems, J. Comput. Anal. Appl., 23 (2017), 607623.
 14. R. Qu, R. P. Agarwal, An iterative scheme for solving nonlinear two point boundary value problems, Int. J. Comput. Math., 64 (1997), 285302.
 15. S. T. Ejaz, G. Mustafa, A subdivision based iterative collocation algorithm for nonlinear third order boundary value problems, Adv. Math. Phys., 2016, Article ID 5026504, (2016).
 16. G. Mustafa, S. T. Ejaz, A subdivision collocation method for solving two point boundary value problems of order three, J. Appl. Anal. Comput., 7 (2017), 942956.
 17. N. Dyn, Interpolatory subdivision schemes and analysis of convergence and smoothness by the formalism of laurent polynomials, in tutorials on multiresolution in geometric modeling, A. Iske, E. Quak, and M. S. Floater, Eds., pp. 5168, Springer, Berlin, Germany, (2002).
 18. C. Conti, K. Hormann Polynomial reproduction for univariate subdivision schemes of any arity, J. Approx. Theory, 163 (2011), 413437.
 19. G. Strang, Linear algebra and its applications, 4^{th} edition, Cengage Learning India Private Limited, ISBN10: 8131501728, 2011.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *