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1. Introduction

The Computer Aided Geometric Design (CAGD) is an attractive field of mathematics to deal with
algorithms for the construction of smooth curves and surfaces. In this field, we present mathematical
formulation of shapes which are used in computer graphics, manufacturing or analysis. It has
applications in different field of mathematics such as numerical geometry, numerical analysis, theory
of approximation, computer graphics, and computer algebra. CAGD gains importance due to its use
in different industrial areas and engineering. One of the most important area in CAGD is “subdivision
schemes”. The subdivision schemes are very useful for the construction of smooth curve and surface.
Here we give short review on 6-point BISS. The first 6-point BISS was introduced by [1] in 1989.
Weissman [2] introduced this scheme in his Master thesis in 1990. Lee et al. [3] also introduced this
scheme in 2006. Ko et al. [4] and Lian [5] introduced schemes in 2007 and 2008 respectively. Later
on, 6-point BISS was introduced by [6, 7].

The 6-point BISS take a polygon as an input and produce the refined polygon as an output. In order
to get refined polygon, 6-point BISS use six points of coarse polygon to find one point corresponding
to each edge of the polygon while carry on the points of coarse polygon. The 6-point BISS schemes
introduced by above authors are different due to the different coefficients used in an affine combination
of six points. All the above authors, have presented the applications of 6-point BISS in curve/surface
modeling. But in this paper, we present its application for the curve modeling as well as for the solution
of 2nd order NSPBVP. Especially, we find the solution of the following type of 2nd order NSPBVP:

ε2y
′′

= f (t, y, y
′

), (1.1)

with boundary conditions

y(0) = β, y(1) = γ. (1.2)

where 0 < ε ≤ 1. This type of 2nd order NSPBVP arises in the different area of engineering and
other sciences. Particularly, these problems arises in the field of nuclear engineering, chemical reaction
theory, physics and many other fields of sciences. Since the too small coefficient of 2nd order derivative
causes the derivative approaches to zero. Therefore it is difficult to handle such type of problems.

In literature, subdivision based algorithms were developed only for linear [8, 9, 10, 11, 12] and
nonlinear [13, 14, 15] boundary value problems. The solution of linear singularly perturbed boundary
value problems was presented by [16]. The solution of 2nd order NSPBVP of the type presented in
(1.1) by subdivision scheme based iterative algorithm is not find yet. This motivate us to introduce the
algorithm for the solution of this type of problems. The distribution of the rest of the paper is as follows:

In Section 2, we present a 6-point BISS and discuss some of its properties. In Section 3, we construct
BISS based iterative algorithm for the approximate solution of NSPBVP. The convergence and error
estimation of the algorithm are also presented in this section. In Section 4, the solutions of some of
NSPBVP are presented. The Section 5 is reserved for the conclusion.
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2. Binary subdivision scheme

If p0 =
{
p0

i , i ∈ Z
}

is the initial sketch (i.e., polygon) of some shape then to get the refined sketch

pk+1 =
{
pk+1

i , i ∈ Z, k > 0
}
, we suggest the following 6-point BISS

pk+1
2i = pk

i ,

pk+1
2i+1 = wpk

i−2 + (−3w − 1
16 )pk

i−1 + (2w + 9
16 )pk

i + (2w + 9
16 )pk

i+1
+(−3w − 1

16 )pk
i+2 + wpk

i+3,

(2.1)

where w is a parameter. The points pk
i are related with the diadic mesh points tk

i = i/2k.

2.1. Continuity of the scheme

In this section, by using the techniques of Dyn [17], we see that the scheme produces the curvature
continuous curves.

Theorem 2.1. The 6-point BISS is C2-continuous for the parametric interval 0 < w < 0.042 i.e.,
scheme produces the limit curve with 2-degree of smoothness.

Proof. If we arrange the points involved in odd and even rules of (2.1) as{
..., pk

i−2, pk
i−2, pk

i−1, pk
i−1, pk

i , pk
i , pk

i+1, pk
i+1, pk

i+2, pk
i+2, pk

i+3, pk
i+3, ...

}
then the sequence of coefficients of these points in odd and even rules is{

..., 0, 0, 0,w, 0,
(
−3w −

1
16

)
, 0,

(
2w +

9
16

)
, 1,

(
2w +

9
16

)
, 0,(

−3w −
1

16

)
, 0,w, 0, 0, 0, ...

}
.

This sequence can be represented in terms of the following Laurent polynomial

α(z) =

{
wz−5 + 0z−4 +

(
−3w −

1
16

)
z−3 + 0z−2 +

(
2w +

9
16

)
z−1 + z0

+

(
2w +

9
16

)
z1 + 0z2 +

(
−3w −

1
16

)
z3 + 0z4 + wz5

}
.

Or equivalently

α(z) =
1
z5

{
w + 0z +

(
−3w −

1
16

)
z2 + 0z3 +

(
2w +

9
16

)
z4 + z5

+

(
2w +

9
16

)
z6 + 0z7 +

(
−3w −

1
16

)
z8 + 0z9 + wz10

}
. (2.2)

By multiplying it with the factor 2z
1+z , we get

α1(z) =
2
z4

{
w − wz +

(
−2w −

1
16

)
z2 +

(
2w +

1
16

)
z3 +

1
2

z4
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+
1
2

z5 +

(
2w +

1
16

)
z6 +

(
−2w −

1
16

)
z7 − wz8 + wz9

}
.

Again multiplying it with the same factor, we get

α2(z) =
4
z3

{
w − 2wz −

1
16

z2 +

(
2w +

1
8

)
z3 +

(
−2w +

3
8

)
z4

+

(
2w +

1
8

)
z5 −

1
16

z6 − 2wz7 + wz8
}
.

Further multiplying, we get

α3(z) =
8
z2

{
w − 3wz +

(
3w −

1
16

)
z2 +

(
−w +

3
16

)
z3

+

(
−w +

3
16

)
z4 +

(
3w −

1
16

)
z5 − 3wz6 + wz7

}
.

Let S α, S α1 , S α2 , S α3 , be the schemes corresponding to the Laurent polynomials α(z), α1(z), α2(z), α3(z)
respectively then∥∥∥∥∥∥

(
1
2

S α1

)∥∥∥∥∥∥
∞

= max
(∑ ∣∣∣Coefficients of zodd

∣∣∣ , ∑ |Coefficients of zeven|
)
.

This implies ∥∥∥∥∥∥
(
1
2

S α1

)∥∥∥∥∥∥
∞

= max
{∣∣∣∣∣6w +

5
8

∣∣∣∣∣ , ∣∣∣∣∣6w +
5
8

∣∣∣∣∣} .
Since

∥∥∥∥(1
2S α1

)∥∥∥∥
∞
< 1 for w ∈ (−13

48 ,
3
48 ), therefore the scheme S α1 is contractive and the scheme S α is

C0-continuous. Since ∥∥∥∥∥∥
(
1
2

S α2

)∥∥∥∥∥∥
∞

= max
{

2
∣∣∣∣∣4w −

1
4

∣∣∣∣∣ , 2 ∣∣∣∣∣8w +
1
4

∣∣∣∣∣} ,
therefore

∥∥∥∥( 1
2S α2

)∥∥∥∥
∞
< 1 for w ∈ (−1

16 ,
3
16 ), (−3

32 ,
1
32 ). Hence the scheme S α2 is contractive and the scheme

S α is C1-continuous. Again ∥∥∥∥∥∥
(
1
2

S α3

)∥∥∥∥∥∥
∞

= max
{

4
∣∣∣∣∣8w −

1
4

∣∣∣∣∣ , 4 ∣∣∣∣∣8w −
1
4

∣∣∣∣∣} ,
so

∥∥∥∥( 1
2S α3

)∥∥∥∥
∞
< 1 for w ∈ (0, 1

16 ). Thus the scheme S α3 is contractive and the scheme S α is C2-
continuous for the parametric interval 0 < w < 0.042. �

2.2. Approximation order of the scheme

Here we compute the approximation order of the scheme. If α(1)(z) denotes first derivative of α(z),
τ =

α(1)(1)
2 = 0 and tk

i = −τ + i+τ
2k = i+0

2k = i
2k then by Conti and Hormann [18], the scheme (2.1) has

primal parametrization. The scheme generates polynomial of degree 3 because

α(z) = (1 + z)3+1b(z),
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where

b(z) =
1

16z5

{
16wz6 − 64wz5 + (−1 + 112w)z4 + (−128w + 4)z3

+(−1 + 112w)z2 − 64wz + 16w
}
.

Lemma 1. The 6-point BISS reproduces up to 3rd degree polynomials w.r.t. the primal parameteriza-
tions (i.e., for τ = 0).

Proof. If α(i)(z), i = 0, 1, 2, 3 denote the derivative of α(z) then following can be verified:

α(k)(−1) = 0, k = 0, 1, 2, 3.

but

α(k)(−1) , 0, for k = 4,

and

u(0)(1) = 2, u(1)(1) = 0, u(2)(1) = 0, u(3)(1) = 0, u(4)(1) = −9 + 768w.

This implies that

u(0)(1) = 2, u(1)(1) = 2
1−1∏
j=0

(0 − j), u(2)(1) = 2
2−1∏
j=0

(0 − j),

u(3)(1) = 2
3−1∏
j=0

(0 − j), u(4)(1) , 2
4−1∏
j=0

(0 − j).

Thus

u(k)(1) = 2
k−1∏
j=0

(0 − j) and u(k)(−1) = 0, k = 0, 1, 2, 3.

This completes the proof. �

Since by Lemma 1, scheme produces polynomial of degree 3 therefore by Dyn [17] it has approxi-
mation order 4.

2.3. Eigenvalues and normalized eigenvectors

Here first we find the subdivision matrix then we compute its eigenvalues and left & right normal-
ized eigenvectors corresponding to these eigenvalues. If we take

n1 = w, n2 =

(
−3w −

1
16

)
, n3 =

(
2w +

9
16

)
then by taking i = −2,−1, 0 and 1 in even and odd rules and i = 2 in just even rule of (2.1), we get a
system of equations.

p j+1 = S p j,
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where

S =



0 0 1 0 0 0 0 0 0

n1 n2 n3 n3 n2 n1 0 0 0

0 0 0 1 0 0 0 0 0

0 n1 n2 n3 n3 n2 n1 0 0

0 0 0 0 1 0 0 0 0

0 0 n1 n2 n3 n3 n2 n1 0

0 0 0 0 0 1 0 0 0

0 0 0 n1 n2 n3 n3 n2 n1

0 0 0 0 0 0 1 0 0



. (2.3)

p j+1 =
(
p j+1
−4 , p j+1

−3 , p j+1
−2 , p j+1

−1 , p j+1
0 , p j+1

1 , p j+1
2 , p j+1

3 , p j+1
4

)T
, and p j =

(
p j
−4, p j

−3, p j
−2,

p j
−1, p j

0, p j
1, p j

2, p j
3, p j

4

)T
. Here S is called the subdivision matrix of the scheme. Its eigenvalues are:

λ = 1, 1
2 ,

1
4 , β3, β4, β5, β6, β7, β8, where β0 = 1, β1 = 1

2 , β2 = 1
4 , while the other eigenvalues β3...β8 and

their corresponding eigenvectors are not needed in rest of the paper, so we do not write their values. It
has been noticed that the some of eigenvalues and eigenvectors of the subdivision matrix are complex.
The right normalized eigenvectors ξβi and left normalized eigenvectors ηβi , for i = 1, 2 corresponding
to the eigenvalues β1 and β2 are

ξβ1 = (−4,−3,−2,−1, 0, 1, 2, 3, 4)T ,

ηβ1 = 1
(512w2+32w−9) (−α1, α2,−α3, α4, 0,−α4, α3,−α2, α1)T ,

ξβ2 = (16, 9, 4, 1, 0, 1, 4, 9, 16)T ,

ηβ2 = 1
8w+1 (α5, α6,−α7, α8,−α9, α8,−α7, α6, α5)T ,

where

α1 =
64w2

3
, α2 =

32w
3
, α3 =

2048w2 + 480w + 9
12

, α4 = 2(3 + 16w), α5 =
w
4
,

α6 =
1

16
, α7 =

64w + 5
1024w

, α8 =
5 + 48w

256w
, α9 =

256w2 + 192w + 15
512w

.

2.4. Applications of the scheme for curve modeling

Here, we show the applications of the 6-point BISS by presenting different shapes. We also show
that how the parameter controls the shape of limiting curves. Red sketches are the initial structures
made by 2D data points while other sketches are produced by the scheme at different values of param-
eter. Here we use w = 0.01, 0.02, 0.03 and 0.04.
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(a) (b) (c)

Figure 1. Limiting closed curves generated by a 6-point BISS at different values of shape
parameters.

3. Applications of the scheme for approximate solutions of NSPBVP

Here we gather some necessary stuff to establish a subdivision based iterative algorithm to find the
approximate solution of NSPBVP.

Lemma 2. [10, 14] The fundamental solution define as

θ(i) =

{
1 for i = 0,
0 for i , 0.

(3.1)

is twice continuously differentiable and cardinally supported on ∆ = (−5, 5) and zero outside the ∆.

Lemma 3. [9] The Cardinal basis θ(t) is twice continuously differentiable on (−5, 5) and its first and
second derivatives are obtained by using the left eigenvectors of (2.3) corresponding to the eigenvalues
β1 = 1

2 and β2 = 1
4 respectively. The derivatives values are

θ
′

(i) = 2sign(i)νT
|i|ηβ1 , θ

′′

(i) = 22νT
|i|ηβ2 , −4 ≤ i ≤ 4

where

sign(i) =



0, if i = 0,

1, if i > 0,

−1, if i < 0,

and

ν0 = (0, 0, 0, 0, 1, 0, 0, 0, 0)T , ν1 = (0, 0, 0, 1, 0, 0, 0, 0, 0)T ,

ν2 = (0, 0, 1, 0, 0, 0, 0, 0, 0)T , ν3 = (0, 1, 0, 0, 0, 0, 0, 0, 0)T ,

ν4 = (1, 0, 0, 0, 0, 0, 0, 0, 0)T .

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6659–6677.
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Hence, the first and second derivatives of (3.1) are

θ
′

(0) = 0,
θ
′

(±1) = ∓ 128w2

3(512w2+32w−9) ,

θ
′

(±2) = ± 64w
3(512w2+32w−9) ,

θ
′

(±3) = ∓ 2048w2+480w+9
6(512w2+32w−9) ,

θ
′

(±4) = ∓
4(3+16w)

(512w2+32w−9) ,



θ
′′

(0) = −256w2+192w+15
128w(8w+1) ,

θ
′′

(±1) = 5+48w
64w(8w+1) ,

θ
′′

(±2) = − 4725
256w(8w+1) ,

θ
′′

(±3) = 1
(4w+1) ,

θ
′′

(±4) = w
(8w+1) .

(3.2)

To construct the iterative algorithm, we only need the right and left normalized eigenvectors corre-
sponding to the eigenvalues β1 and β2. Since the parameter w is involved in these eigenvectors. There-
fore, for simplicity, we take the randem value of w = 1

25 from the C2- continuity of the parametric
interval of the scheme. So the left and right normalized eigenvectors corresponding to the eigenvalues
β1 and β2 are:

ξβ1 = (−4,−3,−2,−1, 0, 1, 2, 3, 4)T ,

ηβ1 = (− 64
12939 ,−

800
12939 ,

19673
51756 ,−

4550
4313 , 0,

4550
4313 ,−

19673
51756 ,

800
12939 ,

64
12939 )T ,

ξβ2 = (16, 9, 4, 1, 0, 1, 4, 9, 16)T ,

ηβ2 = ( 1
132 ,

25
528 ,−

1575
11264 ,

4325
8448 ,−

14431
16896 ,

4325
8448 ,−

1575
11264 ,

25
528 ,

1
132 )T .

Similarly, from (3.2), we get

θ
′

(0) = 0,
θ
′

(±1) = ∓9100
4313 ,

θ
′

(±2) = ±19673
25878 ,

θ
′

(±3) = ∓ 1600
12939 ,

θ
′

(±4) = ∓ 128
12939 ,



θ
′′

(0) = −14431
4224 ,

θ
′′

(±1) = 4325
2112 ,

θ
′′

(±2) = −1575
2813 ,

θ
′′

(±3) = 25
132 ,

θ
′′

(±4) = 1
33 .

(3.3)

In coming section, we introduce 6-point BISS based iterative algorithm for the solution of 2nd order
NSPBVP.

3.1. Algorithm for the approximate solution of 2nd order NSPBVP

Let N ≥ 4, h = 1
N , ε < h and ti = ih, i = 0, 1, 2, · · · ,N. Let

G(t) =
N+4∑
i=−4

giθ
(

t−ti
h

)
, 0 ≤ t ≤ 1, (3.4)

with the property G(ti) = gi be an approximate solution of (1.1). The unknowns {gi}will be determined.
From (1.1) and (3.4), we get

ε2G
′′

(t j) = f (t j, g(t j), g
′

(t j)), j = 0, 1, 2, 3, · · ·N, (3.5)

where

G
′

(t j) = 1
h

N+4∑
i=−4

giθ
′
( t j−ti

h

)
,

G
′′

(t j) = 1
h2

N+4∑
i=−4

giθ
′′
( t j−ti

h

)
.

(3.6)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6659–6677.
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The following N + 1 system of equations can by obtained by substituting (3.4) and (3.6) in (3.5).

ε2
N+4∑
i=−4

giθ
′′
( t j−ti

h

)
= h2 f (t j, g j, g

′

j), j = 0, 1, 2, · · ·N. (3.7)

Theorem 3.1. The system of equations (3.7) reduces to

ε2
4+ j∑
i=−4

gi+ jθ
′′

i = h2 f (t j, g j, g
′

j), (3.8)

where j = 0, 1, 2, · · · ,N and θ
′′

j = θ
′′

( j).

Proof. Let j = 0 then by (3.7)

ε2
{
g−4θ

′′

( t0−t−4
h ) + g−3θ

′′

( t0−t−3
h ) + · · · + gN+3θ

′′

( t0−tN+3
h ) + gN+4θ

′′

( t0−tN+4
h )

}
= h2 f (t0, g0, g

′

0).

For t j = jh, j = 0, 1, 2, · · · ,N, this implies

ε2
{
g−4θ

′′

(4) + g−3θ
′′

(3) + · · · + gN+3θ
′′

(−N − 3) + gN+4θ
′′

(−N − 4)
}

= h2 f (to, g0, g
′

0).

Since the support of θ(t) is (−5, 5) therefore θ
′′

(t) = 0 beyond the interval (−5, 5), so by (3.1) and (3.2),
we get

ε2{g−4θ
′′

(4) + g−3θ
′′

(3) + g−2θ
′′

(2) + g−1θ
′′

(1) + g0θ
′′

(0) + g1θ
′′

(−1)
+g2θ

′′

(−2) + g3θ
′′

(−3) + g4θ
′′

(−4)} = h2 f (t0, g0, g
′

0).

If θ
′′

( j) = θ
′′

j , then

ε2{g−4θ
′′

4 + g−3θ
′′

3 + g−2θ
′′

2 + g−1θ
′′

1 + g0θ
′′

0 + g1θ
′′

−1 + g2θ
′′

−2
+g3θ

′′

−3 + g4θ
′′

−4} = h2 f (t0, g0, g
′

0).
(3.9)

The expansion of (3.7) gives

ε2
{
g−4θ

′′

( t j−t−4

h ) + g−3θ
′′

( t j−t−3

h ) + · · · + gN+3θ
′′

( t j−tN+3

h ) + gN+4θ
′′

( t j−tN+4

h )
}

= h2 f (t j, g j, g
′

j).

For t j = jh, j = 1, 2, · · · ,N, we get

ε2{g−4θ
′′

( j + 4) + g−3θ
′′

( j + 3) + · · · + gN+3θ
′′

( j − N − 3) + gN+4θ
′′

( j − N − 4)}

= h2 f (t j, g j, g
′

j), for j = 0, 1, 2, · · ·N.

If θ
′′

( j) = θ
′′

j , for j = 1, 2, · · · ,N, then

ε2{g−4θ
′′

j+4 + g−3θ
′′

j+3 + · · · + gN+3θ
′′

j−N−3 + gN+4θ
′′

j−N−4} = h2 f (t j, g j, g
′

j).
(3.10)

Hence combining equations (3.9) and (3.10), we get (3.8). �
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The system of N + 1 equations (3.8) with N + 9 unknowns gi can be written as:

WG = F(g), (3.11)

where the (N + 1) × (N + 9) ordered matrix

W =



ε2θ
′′

4 ε2θ
′′

3 ε2θ
′′

2 ε2θ
′′

1 ε2θ
′′

0 ε2θ
′′

−1 ε2θ
′′

−2 ε2θ
′′

−3 ε2θ
′′

−4 · · ·

0 ε2θ
′′

4 ε2θ
′′

3 ε2θ
′′

2 ε2θ
′′

1 ε2θ
′′

0 ε2θ
′′

−1 ε2θ
′′

−2 ε2θ
′′

−3 · · ·

0 0 ε2θ
′′

4 ε2θ
′′

3 ε2θ
′′

2 ε2θ
′′

1 ε2θ
′′

0 ε2θ
′′

−1 ε2θ
′′

−2 · · ·

0 0 0 ε2θ
′′

4 ε2θ
′′

3 ε2θ
′′

2 ε2θ
′′

1 ε2θ
′′

0 ε2θ
′′

−1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 · · ·

0 0 0
0 0 0
0 0 0
0 0 0
· · · · · · · · ·

ε2θ
′′

−4 0 0
ε2θ

′′

−3 ε2θ
′′

−4 0
ε2θ

′′

−2 ε2θ
′′

−3 ε2θ
′′

−4


, (3.12)

the (N + 9) × 1 ordered matrix

G = (g−4, g−3, g−2, · · · , gN+3, gN+4)T , (3.13)

and the (N + 1) × 1 ordered matrix

F(g) = (h2 f (t0, g0, g
′

0), h2 f (t1, g1, g
′

1), · · · , h2 f (tN , gN , g
′

N))T . (3.14)

3.2. Boundary conditions

Since the number of equations (i.e., N + 1) are less than the number of unknowns (i.e., N + 9) in the
system (3.11). So there are 8 degree of freedoms to get unique solution. Two degree of freedoms are
given in (1.2), i.e.

g0 = β, gN = γ, (3.15)

Since 6-point BISS reproduces 3rd degree polynomial with 4th order of approximation so we suggest
the boundary conditions of order four for solution. The values of the left end points g−3, g−2, g−1 and
right end points gN+1, gN+2, gN+3 can be computed by using the polynomial A(t) of degree three by
interpolating it at (ti, gi), 0 ≤ i ≤ 3. Let

gi = A(−ti), i = 1, 2, 3,
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where

A(ti) =
4∑

j=1

(
4
j

)
(−1) j+1G(ti− j).

Since G(ti) = gi then by replacing ti = −ti for i = 1, 2, 3, we have

A(−ti) =
4∑

j=1

(
4
j

)
(−1) j+1g(t−i+ j).

We suggest the following boundary conditions to find the values of the left end points

4∑
j=0

(
4
j

)
(−1) jg(t−i+ j) = 0, i = 3, 2, 1. (3.16)

Similarly for the right end points, we may define gi = A(ti), i = N + 1,N + 2,N + 3 where

A(ti) =
4∑

j=1

(
4
j

)
(−1) j+1g(ti− j).

Similarly, we suggest the following conditions to find the values of the right end points

4∑
j=0

(
4
j

)
(−1) jg(ti− j) = 0, i = N + 1,N + 2,N + 3. (3.17)

So we get 6 degree of freedoms from (3.16) and (3.17). Finally, we get the system of (N + 9)× (N + 9)
nonlinear equations:

JG = R(g), (3.18)

where the coefficient matrix J = (JT
0 ,W

T , JT
1 )T , W is defined in (3.12). To obtain matrix J0, first three

rows of J0 comes from equation (3.16) and 4th row of J0 comes from (3.15) at g0 = β,

J0 =


0 1 −4 6 −4 1 0 0 0 · · · 0 0 0
0 0 1 −4 6 −4 1 0 0 · · · 0 0 0
0 0 0 1 −4 6 −4 1 0 · · · 0 0 0
0 0 0 0 1 0 0 0 0 · · · 0 0 0

 .
Similarly for J1, first row of J1 comes from (3.15) at gN = γ and remaining rows come from (3.17),

J1 =


0 0 0 · · · 0 0 0 0 1 0 0 0 0
0 0 0 · · · 0 1 −4 6 −4 1 0 0 0
0 0 0 · · · 0 0 1 −4 6 −4 1 0 0
0 0 0 · · · 0 0 0 1 −4 6 −4 1 0

 .
And G and R(g) are defined as

G = (g−4, g−3, · · · , gN+3, gN+4)T ,
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R(g) = (0, 0, 0, y(0), FT , y(1), 0, 0, 0)T .

Now, we see whether or not the system (3.18) is nonsingular. In this system the matrix J is neither
diagonally dominant nor symmetric. For the time being, if we ignore the first and last three rows
and columns of the matrix J then it is symmetric. We consider the symmetric part of it of order
(N + 1) × (N + 1) for sufficiently large N.

C =



ε2θ
′′

0 ε2θ
′′

2 ε2θ
′′

2 · · · 0 0 0
ε2θ

′′

−1 ε2θ
′′

0 ε2θ
′′

1 · · · 0 0 0
ε2θ

′′

−2 ε2θ
′′

−1 ε2θ
′′

0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · ε2θ
′′

0 ε2θ
′′

1 ε2θ
′′

2
0 0 0 · · · ε2θ

′′

−1 ε2θ
′′

0 ε2θ
′′

1
0 0 0 · · · ε2θ

′′

−2 ε2θ
′′

−1 ε2θ
′′

0


.

It can be easily seen that the matrix C is nonsingular for N ≤ 1000. While the determinant of J is also
non zero. Its determinant increases as N increases for N ≤ 1000. This implies that J is nonsingular.
In other way, the eigenvalues of J for N ≤ 1000 are nonzero therefore it is also nonsingular by [19].
Hence the system (3.18) is nonsingular for N ≤ 1000.

3.3. The iterative algorithm

The iterative algorithm based on 6-point BISS can be summarized in three steps.
Step-1. Initial approximation:
First of all choose the initial approximation G0 for the system of linear equations:

JG = F0 (3.19)

where 
F0 = (0, 0, 0, β, µ0, µ1, · · · , µN , γ, 0, 0, 0)T ,

µi = h2 f (ti, τi, d), i = 0, 1, 2, · · · ,N,
τi = γ + ih(β − γ), i = 0, 1, 2, · · · ,N,
d = β − γ.

Here F0 is the linear approximation of R(g).
Step-2. Iterative scheme:
Follow the following iterative scheme for rest of the approximations

JG(k+1) = R(G(k)), k = 0, 1, 2, · · · (3.20)

Step-3. Stoping criteria:
If εtol is error tolerance then repeat Step-2 until any one of the following inequality is satisfied

(i) : ‖G(k−1) −G(k)‖∞ ≤ εtol,

(ii) : ‖JG(k) − R(G(k))‖∞ ≤ εtol,

(iii) : ‖JG(k) − JG(k−1)‖∞ ≤ εtol,

(iv) : ‖G(k−1) −G(k)‖∞ ≤ ‖G(k)‖∞εtol.

(3.21)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6659–6677.



6671

3.4. Convergence of iterative algorithm

The following theorem guaranteed the convergence of iterative algorithm.

Proposition 1. If L0 & L1 and h are Lipschitz constants and mesh size respectively then the solution
at kth iteration {G(k)} converges linearly to the solution G∗ of the nonlinear system (3.18) with the
condition that Lipschitz constants and mesh size are small enough i.e.,

‖J−1‖∞(L0h2 + 7772
25878 L1h) ≤ 1.

Proof. For small values of h and ε < h, we have JG∗ = F(G∗) and JG(k+1) = F(G(k)). Then the error
vector E(k) = G(k) −G∗ satisfies the following

JE(k+1) = F(G(k)) − F(G∗).

For i = 1, 2, · · · ,N − 1, we get the following by Mean Value Theorem

D2Ek+1
i = (F(G(k)) − F(G∗))i = G∗yE(k)

i + f ∗
y′

E
′(k)
i = G∗yE(k)

i + G∗
y′

D1E(k)
i ,

where the difference operators D1 and D2 are defined below

D1Gi =
1

51756
[256(gi+4 − gi−4) + 3200(gi+3 − gi−3) − 19673(gi+2 − gi−2)

+54600(gi+1 − gi−1)],

D2Gi = 8[256(gi+4 − gi−4) + 1600(gi+3 − gi−3) − 4750(gi+2 − gi−2)

+17300(gi+1 − gi−1) − 28862gi].

Since Ei = EN−i = 0, i = 0,−1,−2,−3,−4, therefore

‖Ek+1‖∞ ≤ ‖J−1‖∞(h2L0‖E(k)‖∞ + hL1‖D1‖‖E(k)‖∞).

This implies
‖E(k+1)‖∞
‖E(k)‖∞

≤ ‖J−1‖∞(L0h2 + ‖D1‖L1h).

This further implies
‖E(k+1)‖∞
‖E(k)‖∞

≈ ‖J−1‖∞‖D1‖L1h.

Since

‖D1‖ = 77729
25878 ,

therefore

h ≤ 25878
77729 L−1

1 ‖J
−1‖−1
∞ .

This completes the proof. �

In following theorem, we see that the power of approximation of iterative algorithm is at least O(h4).
Its proof is similar to the proof of Proposition in [14].

Theorem 3.2. let y(t) be the exact and G(t) be the numerical solutions of the problem (2.1) then

‖Ei‖ = ‖y(ti) −G(ti)‖ ≤ O(h4). (3.22)
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4. Solution of 2nd order NSPBVP

Here we present the solutions of two 2nd order NSPBVPs obtained by our iterative algorithm.

Example 4.1. Consider the 2nd order NSPBVP

εy
′′

(t) = yy
′

, t ∈ (0, 1), (4.1)

y(0) = 1, y(1) = 0.

with exact solution

y(t) =
1 − exp( t−1

ε
)

1 + exp( t−1
ε

)
.

We find the approximate solution of above problem by iterative algorithm with parameters: ε =

(0.244)2, N=10 and tolε = 10−6. We see that the maximum absolute error (MAE) is 2.55676 × 10−6

after third iteration. The comparison between approximate and exact solutions is given in Table 1 and
Figure 2.

Example 4.2. Consider the 2nd order NSPBVP

εy
′′

(t) = y(t) + y2(t) − exp(−2t/
√
ε), t ∈ (0, 1) (4.2)

y(0) = 1, y(1) = exp
(
−1
√
ε

)
.

with exact solution

y(t) = exp
(
−t
√
ε

)
.

We find the approximate solutions of above problem by iterative algorithm with parameters: ε =

(0.244)2, (0.244)4 & (0.244)5, N=32 and tol = 10−6 and MAE are 0.51×10−2, 0.34×10−3 & 0.85×10−4

obtained after third iteration respectively. The comparison between approximate and exact solutions is
given in Tables 2, 3 & 4 and Figure 3. From these tables, we have observed that for very smaller value
of ε (i.e. ε → 0) more accurate results can be achieved.
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Table 1. MAE of Example 4.1.

for ε = (0.244)2 Exact solution Approximate Error
and ti yi solution gi ‖yi − gi‖

0.0 0.029759 0.02976 0.000000
0.1 0.026783 0.026785 0.000001
0.2 0.023807 0.0238099 0.000003
0.3 0.020831 0.020835 0.000003
0.4 0.017855 0.017859 0.000003
0.5 0.014879 0.0148829 0.000003
0.6 0.011903 0.011906 0.000003
0.7 0.008928 0.008930 0.000002
0.8 0.005952 0.005953 0.000002
0.9 0.002976 0.002976 0 .000001
1.0 0 0 0

Table 2. MAE of Example 4.2.

for ε = (0.244)2 Exact solution Approximate Error
and ti yi solution gi ‖yi − gi‖

0.0 1 1 0
0.0625 0.984866 0.986102 0.001237
0.125 0.969960 0.972251 0.002291
0.25 0.940823 0.944708 0.003884

0.375 0.912561 0.917370 p0.004809
0.5 0.885148 0.890231 0.005082

0.625 0.858559 0.863281 0.004722
0.75 0.832768 0.836512 0.003744

0.875 0.807752 0.809917 0.002165
1.0 0.7834876 0.7834876 0
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Table 3. MAE of Example 4.2.

for ε = (0.244)4 Exact solution Approximate Error
and ti yi solution gi ‖yi − gi‖

0.0 1 1 0
0.0625 0.996286 0.996366 0.000080
0.125 0.992585 0.992734 0.000149
0.25 0.985226 0.985481 0.000255

0.375 0.977921 0.978240 0.000319
0.5 0.970671 0.971011 0.000340

0.625 0.963474 0.963793 0.000319
0.75 0.956330 0.956586 0.000255

0.875 0.949240 0.949389 0.000149
1.0 0.942202 0.942202 0

Table 4. MAE of Example 4.2.

for ε = (0.244)5 Exact solution Approximate Error
and ti yi solution gi ‖yi − gi‖

0.0 1 1 0
0.0625 0.998164 0.998183 0.000019
0.125 0.996331 0.996365 0.000036
0.25 0.992675 0.992738 0.000063

0.375 0.989032 0.989111 0.000079
0.5 0.985403 0.985487 0.000085

0.625 0.981788 0.981867 0.000079
0.75 0.978185 0.978249 0.000064

0.875 0.974595 0.974633 0.000037
1.0 0.971020 0.971020 0

5. Conclusion

In this paper, we have presented a 6-point BISS which produces a curvature continuous curve with
4th order of approximation. Firstly, we have explored its qualities for curve modeling. Secondly,
we have used this scheme to develop an iterative algorithm for the solution of 2nd order NSPBVP
arising from different physical phenomenon. The convergence of an iterative algorithm has also been
presented. The approximate solutions of 2nd order NSPBVP obtained by our iterative algorithm has
approximation order ≤ O(h4).
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Figure 2. Graphical comparison of exact and approximate solutions of Example 4.1 for
N = 10 with ε = (0.244)2 respectively.

Figure 3. Graphical comparison of exact and approximate solutions of Example 4.2 for
N = 32 with ε = (0.244)3 respectively.
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