
Mathematical Biosciences and Engineering, 2020, 17(4): 32943328. doi: 10.3934/mbe.2020188
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission
1 Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada
2 Interdisciplinary Studies, University of British Columbia, Vancouver, B.C., Canada
Received: , Accepted: , Published:
References
1. C. J. Noakes, C. B. Beggs, P. A. Sleigh, K. G. Kerr, Modelling the transmission of airborne infections in enclosed spaces, Epidemiol. Infect., 134 (2006), 10821091.
2. C. B. Beggs, The airborne transmission of infection in hospital buildings: Fact or fiction? Indoor Built Environ., 12 (2003), 918.
3. C. M. Issarow, N. Mulder, R. Wood, Modelling the risk of airborne infectious disease using exhaled air. J. Theor. Biol., 372 (2015), 100106.
4. Z. Xu, D. Chen, An SIS epidemic model with diffusion, Appl. Math. Ser. B, 32 (2017), 127146.
5. J. Ge, K. Kim, Z. Lin, H. Zhu, A SIS reactiondiffusionadvection model in a lowrisk and highrisk domain, J. Differ. Equ., 259 (2015), 54865509.
6. M. Liu, Y. Xiao, Modeling and analysis of epidemic diffusion with population migration, J. Appl. Math., 2013 (2003), 583648.
7. N. Ziyadi, S. Boulite, M. L. Hbid, S. Touzeau, Mathematical analysis of a PDE epidemiological model applied to scrapie transmission, Commun. Pure Appl. Anal., 7 (2008), 659.
8. J. Gou, M. J. Ward, An asymptotic analysis of a 2D model of dynamically active compartments coupled by bulk diffusion, J. Nonlinear Sci., 26 (2016), 9791029.
9. F. Brauer, A new epidemic model with indirect transmission, J. Biol. Dyn., 11 (2017), 285293.
10. J. F. David, Epidemic models with heterogeneous mixing and indirect transmission, J. Biol. Dyn., 12 (2018), 375399.
11. M. J. Ward, J. B. Keller, Strong localized perturbations of eigenvalue problems, SIAM J. Appl. Math., 53 (1993), 770798.
12. PDE solutions Inc, FlexPDE 6, 2019.
13. F. Brauer, C. CastilloChavez, Mathematical Models in Population Biology and Epidemiology, 40, Springer, 2001.
14. O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365382.
15. P. V. den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948.
16. D. Bichara, Y. Kang, C. CastilloChavez, R. Horan, C. Perrings, SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol., 77 (2015), 20042034.
17. F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol., 70 (2008), 18691885.
18. J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J. Wu, A final size relation for epidemic models, Math. Biosci. Eng., 4 (2007), 159175.
19. F. Brauer, Ageofinfection and the final size relation, Math. Biosci. Eng., 5 (2008), 681690.
20. F. Brauer, The final size of a serious epidemic, Bull. Math. Biol., 81 (2019), 869877.
21. F. Brauer, A final size relation for epidemic models of vectortransmitted diseases, Infect. Dis. Model., 2 (2017), 1220.
22. F. Brauer, C. CastilloChaavez, Mathematical models for communicable diseases, volume 84. SIAM, 2012.
23. F. Brauer, C. CastilloChavez, Z. Feng, Mathematical models in epidemiology, 2018.
24. L. F. Shampine, M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci. Comput., 18 (1997), 122.
25. L. Zhang, Z.C. Wang, Y. Zhang, Dynamics of a reactiondiffusion waterborne pathogen model with direct and indirect transmission, Comput. Math. Appl., 72 (2016), 202215.
26. T. Kolokolnikov, M. S. Titcombe, M. J. Ward, Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps, Europ. J. Appl. Math., 16 (2005), 161200.
27. S. Chinviriyasit, W. Chinviriyasit, Numerical modelling of an SIR epidemic model with diffusion, Appl. Math. Comput., 216 (2010), 395409.
28. H. Huang, M. Wang, The reactiondiffusion system for an SIR epidemic model with a free boundary, Discrete Cont. DynB, 20 (2015), 20393050.
29. K. Ik Kim, Z. Lin, Asymptotic behavior of an SEI epidemic model with diffusion, Math. Comput. Model., 47 (2008), 13141322.
30. E. M. Lotfi, M. Maziane, K. Hattaf, N. Yousfi, Partial differential equations of an epidemic model with spatial diffusion, Int. J. Part. Differ. Eq., 2014 (2014), 186437.
31. F. A. Milner, R. Zhao, Analysis of an SIR model with directed spatial diffusion, Math. Popul. Stud., 15 (2008), 160181.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)