Citation: Jinzhe Suo, Bo Li. Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 418-441. doi: 10.3934/mbe.2020023
[1] | L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Dis. Contin. Dyn. Syst. A, 21 (2008), 1-20. |
[2] | R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I, J. Differ. Equations, 247 (2009), 1096-1119. |
[3] | R. M. Anderson and R. M. May, Populaition biology of infectious diseases, Nature 280 (1979), 361-367. |
[4] | R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equations, 261 (2016), 3305-3343. |
[5] | R. Cui, K.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343-2373. |
[6] | Z. Du and R. Peng, A priori L^{∞}-estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439. |
[7] | H. W. Hethcote, Epidemiology models with variable population size, Mathematical understanding of infectious disease dynamics, 63-89, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 16, World Sci. Publ., Hackensack, NJ, 2009. |
[8] | W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics-I, Proc. Roy. Soc. London Ser. A, 115 (1927), 700-721. |
[9] | M. Martcheva, An introduction to mathmatical epidemiology, Springer,New York, (2015). |
[10] | H. W Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[11] | B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), Art. 96, 25pp. |
[12] | H. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equations, 262 (2017), 885-913. |
[13] | M. E. Alexander and S. M. Moghadas, Bifurcation Analysis of an SIRS Epidemic Model with Generalized Incidence, SIAM J. Appl. Math., 65 (2001), 1794-1816. |
[14] | R. M. Anderson and R. M. May, Regulation and stability of host-parasite interactions.I. Regulatory processes, J. Anim. Ecol., 47 (1978), 219-247. |
[15] | O. Diekmann and M. Kretzschmar, Patterns in the effects of infectious diseases on population growth, J. Math. Biol., 29 (1991), 539-570. |
[16] | J. A. P. Heesterbeck and J. A. J. Metz, The saturating contact rate in marriage and epidemic models, J. Math. Biol., 31 (1993), 529-539. |
[17] | M. G. Roberts, The dynamics of bovine tuberculosis in possum populations and its eradication or control by culling or vaccination, J. Anim. Ecol., 65 (1996), 451-464. |
[18] | Y. Cai, K. Wang and W. Wang, Global transmission dynamics of a Zika virus model, Appl. Math. Lett., 92 (2019), 190-195. |
[19] | L. Chen and J. Sun, Optimal vaccination and treatment of an epidemic network model, Physics Lett. A, 378 (2014), 3028-3036. |
[20] | L. Chen and J. Sun, Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Physica A, 410 (2014), 196-204. |
[21] | K. Deng and Y. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946. |
[22] | X. Gao, Y. Cai, F. Rao, et al., Positive steady states in an epidemic model with nonlinear incidence rate, Comput. Math. Appl., 75 (2018), 424-443. doi: 10.1016/j.camwa.2017.09.029 |
[23] | J. Ge, C. Lei and Z. Lin, Reproduction numbers and the expanding fronts for a diffusion-advection SIS model in heterogeneous time-periodic environment, Nonlinear Anal. Real World Appl., 33 (2017), 100-120. |
[24] | K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of endemic equilibrium of a reactiondiffusion-advection SIS epidemic model, Calc. Var. Partial Dif., 56 (2017), Art. 112, 28 pp. |
[25] | C. Lei, F. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499- 4517. |
[26] | B. Li and Q. Bie, Long-time dynamics of an SIRS reaction-diffusion epidemic model, J. Math. Anal. Appl., 475 (2019), 1910-1926. |
[27] | H. Li, R. Peng and Z. Wang, On a diffusive SIS epidemic model with mass action mechanism and birth-death effect: analysis, simulations and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153. |
[28] | H. Li, R. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, Eur. J. Appl. Math., 2019, https://doi.org/10.1017/S0956792518000463, in press. |
[29] | Z. Lin, Y. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2355-2376. |
[30] | R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247. |
[31] | L. Pu and Z. Lin, A diffusive SIS epidemic model in a heterogeneous and periodically evolving environment, 16 (2019), 3094-3110. |
[32] | X. Wen, J. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729. |
[33] | Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differ. Equations, 261 (2016), 4424-4447. |
[34] | M. Zhu, X. Guo and Z. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math. Biosci. Eng., 14 (2017), 1565-1583. |
[35] | R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. |
[36] | P. Magal and X.-Q Zhao, Global attractive and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275. |
[37] | X.-Q. Zhao, Dynamical Systems in Populaition Biology, Springer-Verlag, New York,(2003) |
[38] | M. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, 1993(in chinese). |
[39] | K. J. Brown, P. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, J. Differ. Equations, 40 (1981), 232-252. |
[40] | G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400-1406. |
[41] | R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488. |
[42] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer, (2001). |
[43] | Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differ. Equations, 246 (2009), 3932-3956. |
[44] | Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79-131. |
[45] | W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and eystems of activator-inhibitor type, Trans. Amer. Math. Soc., 297 (1986), 351-368. |
[46] | H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590. |
[47] | R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondiffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25. |