Research article Special Issues

Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem

  • Received: 21 February 2019 Accepted: 13 May 2019 Published: 23 May 2019
  • Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer feedforward neural network (SLFN). Compared with traditional gradient-based neural network learning algorithms, ELM has the advantages of fast learning speed, good generalization performance and easy implementation. But due to the random determination of input weights and hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm DAEM-ELM has better generalization performance than traditional ELM and other evolutionary ELMs.

    Citation: Mengya Zhang, Qing Wu, Zezhou Xu. Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235

    Related Papers:

    [1] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [2] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [3] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [4] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [5] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [6] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [7] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [8] Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391
    [9] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [10] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
  • Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer feedforward neural network (SLFN). Compared with traditional gradient-based neural network learning algorithms, ELM has the advantages of fast learning speed, good generalization performance and easy implementation. But due to the random determination of input weights and hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm DAEM-ELM has better generalization performance than traditional ELM and other evolutionary ELMs.




    [1] W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights, Neurocomputing, (2017), S0925231217314613.
    [2] G. Camps-Valls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification: earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54.
    [3] L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863.
    [4] E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for large-scale remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657.
    [5] G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501.
    [6] J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Device-free localization using empirical wavelet transform-based extreme learning machine, Proceedings of the 30th Chinese Control and Decision Conference, (2018), 2585–2590.
    [7] Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast furnace via improved extreme learning machine, Neural Process. Lett. (2018), 10.1007/s11063-018-9888-3.
    [8] J. Zhang, Y. F. Xu, J. Q. Xue, et al., Real-time prediction of solar radiation based on online sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, (2018), 53–57.
    [9] R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653.
    [10] J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for device-free localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106.
    [11] Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine for image classification, Neurocomputing, 339 (2019), 66–76.
    [12] G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529.
    [13] F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on particle swarm optimization, Neurocomputing, 116 (2013), 87–93.
    [14] A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017), 66–79.
    [15] G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency, Knowl-Based Syst., 67 (2014), 278–289.
    [16] İ. B. Ş, and S. Fang, An electromagnetism-like mechanism for global optimization, J. Global Optim., 25 (2003), 263–282.
    [17] C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetism-like mechanism algorithm for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634.
    [18] C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetism-like mechanism for parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017), 3149–3163.
    [19] X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686.
    [20] X. Y. Li, C. Lu, L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
    [21] X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019), 10.1007/s12293-019-00283-4.
    [22] Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on parameter optimisation of a multi-pass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788.
    [23] K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015), 220–229.
    [24] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
    [25] G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural Networks, 61 (2015), 32–48.
    [26] P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002), 525–536.
    [27] Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern Recogn., 38 (2005), 1759–1763.
    [28] D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2017. Available from: http://archive.ics.uci.edu/ml.
    [29] Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategy-based extreme learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12.
  • This article has been cited by:

    1. Ruiwen WU, Xiuxiang LIU, Dynamics of a predator-prey system with a mate-finding Allee effect on prey, 2017, 41, 13000098, 585, 10.3906/mat-1411-8
    2. Ruiwen Wu, Xiuxiang Liu, Dynamics of a Predator-Prey System with a Mate-Finding Allee Effect, 2014, 2014, 1085-3375, 1, 10.1155/2014/673424
    3. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions, 2018, 990, 1742-6588, 012011, 10.1088/1742-6596/990/1/012011
    4. Pablo Aguirre, José D. Flores, Eduardo González-Olivares, Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response, 2014, 16, 14681218, 235, 10.1016/j.nonrwa.2013.10.002
    5. Nicole Martínez-Jeraldo, Pablo Aguirre, Allee effect acting on the prey species in a Leslie–Gower predation model, 2019, 45, 14681218, 895, 10.1016/j.nonrwa.2018.08.009
    6. J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret, Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects, 2016, 84, 0924-090X, 607, 10.1007/s11071-015-2510-6
    7. Viviana Rivera, Pablo Aguirre, Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response, 2020, 165, 0167-8019, 19, 10.1007/s10440-019-00239-3
    8. J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths, 2013, 18, 1553-524X, 2397, 10.3934/dcdsb.2013.18.2397
    9. Pablo Aguirre, A general class of predation models with multiplicative Allee effect, 2014, 78, 0924-090X, 629, 10.1007/s11071-014-1465-3
    10. Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, High Codimension Bifurcations of a Predator–Prey System with Generalized Holling Type III Functional Response and Allee Effects, 2022, 1040-7294, 10.1007/s10884-022-10214-6
    11. Feifan Zhang, Hao Tian, Hongfan Zhao, Xinran Zhang, Qiyu Shi, Spatiotemporal Pattern Formation in a Discrete Toxic-Phytoplankton–Zooplankton Model with Cross-Diffusion and Weak Allee Effect, 2022, 32, 0218-1274, 10.1142/S0218127422501565
    12. Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, 2022, 309, 00220396, 704, 10.1016/j.jde.2021.11.041
    13. Uttam Ghosh, Susmita Sarkar, Prabir Chakraborty, Stability and Bifurcation Analysis of a Discrete Prey-Predator Model with Mate-Finding Allee, Holling Type-I Functional Response and Predator Harvesting, 2022, 52, 0103-9733, 10.1007/s13538-022-01189-2
    14. Arturo Mena-Lorca, Jaime Mena-Lorca, Astrid Morales-Soto, 2022, Chapter 16, 978-3-031-04270-6, 347, 10.1007/978-3-031-04271-3_16
    15. Henan Wang, Ping Liu, Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, 2023, 171, 09600779, 113456, 10.1016/j.chaos.2023.113456
    16. Zuchong Shang, Yuanhua Qiao, Bifurcation analysis in a predator–prey model with strong Allee effect on prey and density‐dependent mortality of predator, 2023, 0170-4214, 10.1002/mma.9793
    17. Manoj Kumar Singh, Arushi Sharma, Luis M. Sánchez-Ruiz, Impact of the Allee Effect on the Dynamics of a Predator–Prey Model Exhibiting Group Defense, 2025, 13, 2227-7390, 633, 10.3390/math13040633
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4808) PDF downloads(680) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog