Citation: Mengya Zhang, Qing Wu, Zezhou Xu. Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235
[1] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[2] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[3] | Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319 |
[4] | Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877 |
[5] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[6] | Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247 |
[7] | Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422 |
[8] | Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391 |
[9] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[10] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[1] | W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights, Neurocomputing, (2017), S0925231217314613. |
[2] | G. Camps-Valls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification: earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54. |
[3] | L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863. |
[4] | E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for large-scale remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657. |
[5] | G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501. |
[6] | J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Device-free localization using empirical wavelet transform-based extreme learning machine, Proceedings of the 30th Chinese Control and Decision Conference, (2018), 2585–2590. |
[7] | Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast furnace via improved extreme learning machine, Neural Process. Lett. (2018), 10.1007/s11063-018-9888-3. |
[8] | J. Zhang, Y. F. Xu, J. Q. Xue, et al., Real-time prediction of solar radiation based on online sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, (2018), 53–57. |
[9] | R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neural-network-based approach to finite-time optimal control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653. |
[10] | J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for device-free localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106. |
[11] | Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine for image classification, Neurocomputing, 339 (2019), 66–76. |
[12] | G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529. |
[13] | F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on particle swarm optimization, Neurocomputing, 116 (2013), 87–93. |
[14] | A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017), 66–79. |
[15] | G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency, Knowl-Based Syst., 67 (2014), 278–289. |
[16] | İ. B. Ş, and S. Fang, An electromagnetism-like mechanism for global optimization, J. Global Optim., 25 (2003), 263–282. |
[17] | C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetism-like mechanism algorithm for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634. |
[18] | C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetism-like mechanism for parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017), 3149–3163. |
[19] | X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686. |
[20] | X. Y. Li, C. Lu, L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409. |
[21] | X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019), 10.1007/s12293-019-00283-4. |
[22] | Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on parameter optimisation of a multi-pass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788. |
[23] | K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015), 220–229. |
[24] | S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073. |
[25] | G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural Networks, 61 (2015), 32–48. |
[26] | P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002), 525–536. |
[27] | Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern Recogn., 38 (2005), 1759–1763. |
[28] | D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2017. Available from: http://archive.ics.uci.edu/ml. |
[29] | Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategy-based extreme learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12. |
1. | Ruiwen WU, Xiuxiang LIU, Dynamics of a predator-prey system with a mate-finding Allee effect on prey, 2017, 41, 13000098, 585, 10.3906/mat-1411-8 | |
2. | Ruiwen Wu, Xiuxiang Liu, Dynamics of a Predator-Prey System with a Mate-Finding Allee Effect, 2014, 2014, 1085-3375, 1, 10.1155/2014/673424 | |
3. | J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions, 2018, 990, 1742-6588, 012011, 10.1088/1742-6596/990/1/012011 | |
4. | Pablo Aguirre, José D. Flores, Eduardo González-Olivares, Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response, 2014, 16, 14681218, 235, 10.1016/j.nonrwa.2013.10.002 | |
5. | Nicole Martínez-Jeraldo, Pablo Aguirre, Allee effect acting on the prey species in a Leslie–Gower predation model, 2019, 45, 14681218, 895, 10.1016/j.nonrwa.2018.08.009 | |
6. | J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret, Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects, 2016, 84, 0924-090X, 607, 10.1007/s11071-015-2510-6 | |
7. | Viviana Rivera, Pablo Aguirre, Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response, 2020, 165, 0167-8019, 19, 10.1007/s10440-019-00239-3 | |
8. | J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths, 2013, 18, 1553-524X, 2397, 10.3934/dcdsb.2013.18.2397 | |
9. | Pablo Aguirre, A general class of predation models with multiplicative Allee effect, 2014, 78, 0924-090X, 629, 10.1007/s11071-014-1465-3 | |
10. | Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, High Codimension Bifurcations of a Predator–Prey System with Generalized Holling Type III Functional Response and Allee Effects, 2022, 1040-7294, 10.1007/s10884-022-10214-6 | |
11. | Feifan Zhang, Hao Tian, Hongfan Zhao, Xinran Zhang, Qiyu Shi, Spatiotemporal Pattern Formation in a Discrete Toxic-Phytoplankton–Zooplankton Model with Cross-Diffusion and Weak Allee Effect, 2022, 32, 0218-1274, 10.1142/S0218127422501565 | |
12. | Alessandro Arsie, Chanaka Kottegoda, Chunhua Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, 2022, 309, 00220396, 704, 10.1016/j.jde.2021.11.041 | |
13. | Uttam Ghosh, Susmita Sarkar, Prabir Chakraborty, Stability and Bifurcation Analysis of a Discrete Prey-Predator Model with Mate-Finding Allee, Holling Type-I Functional Response and Predator Harvesting, 2022, 52, 0103-9733, 10.1007/s13538-022-01189-2 | |
14. | Arturo Mena-Lorca, Jaime Mena-Lorca, Astrid Morales-Soto, 2022, Chapter 16, 978-3-031-04270-6, 347, 10.1007/978-3-031-04271-3_16 | |
15. | Henan Wang, Ping Liu, Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, 2023, 171, 09600779, 113456, 10.1016/j.chaos.2023.113456 | |
16. | Zuchong Shang, Yuanhua Qiao, Bifurcation analysis in a predator–prey model with strong Allee effect on prey and density‐dependent mortality of predator, 2023, 0170-4214, 10.1002/mma.9793 | |
17. | Manoj Kumar Singh, Arushi Sharma, Luis M. Sánchez-Ruiz, Impact of the Allee Effect on the Dynamics of a Predator–Prey Model Exhibiting Group Defense, 2025, 13, 2227-7390, 633, 10.3390/math13040633 |