Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A multi-base harmonic balance method applied to Hodgkin-Huxley model

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

Our aim is to propose a new robust and manageable technique, called multi-base harmonic balance method, to detect and characterize the periodic solutions of a nonlinear dynamical system. Our case test is the Hodgkin-Huxley model, one of the most realistic neuronal models in literature. This system, depending on the value of the external stimuli current, exhibits periodic solutions, both stable and unstable.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Periodic solutions; harmonic balance method; Hodgkin-Huxley model

Citation: Aymen Balti, Valentina Lanza, Moulay Aziz-Alaoui. A multi-base harmonic balance method applied to Hodgkin-Huxley model. Mathematical Biosciences and Engineering, 2018, 15(3): 807-825. doi: 10.3934/mbe.2018036

References

  • [1] U. Asher,J. Christiansen,R. D. Russell, Collocation software for boundary-value ODEs, ACM Transactions on Mathematical Software (TOMS), 7 (1981): 209-222.
  • [2] U. Asher, R. Mattheij and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1995.
  • [3] G. Bader,U. Asher, A new basis implementation for a mixed order boundary value ODE solver, SIAM Journal on Scientific and Statistical Computing, 8 (1987): 483-500.
  • [4] M. Basso,R. Genesio,A. Tesi, A frequency method for predicting limit cycle bifurcations, Nonlinear Dynamics, 13 (1997): 339-360.
  • [5] F. Bonani,M. Gilli, Analysis of stability and bifurcations of limit cycles in Chua's circuit through the harmonic-balance approach, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999): 881-890.
  • [6] T. H. Bullock,M. V. L. Bennett,D. Johnston,R. Josephson,E. Marder,R. D. Fields, The neuron doctrine, Redux, Science, 310 (1999): 791-793,2005.
  • [7] T. Chan,H. B. Keller, Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems, SIAM Journal on Scientific and Statistical Computing, 3 (1982): 173-194.
  • [8] E. Doedel,H. B. Keller,J. P. Kernevez, Numerical analysis and control of bifurcation problems (I): Bifurcation in finite dimensions, International journal of bifurcation and chaos, 1 (1991): 493-520.
  • [9] S. Doi,S. Nabetani,S. Kumagai, Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes, Biological cybernetics, 85 (2001): 51-64.
  • [10] M. Farkas, Periodic Motions, Springer-Verlag, New York, 1994.
  • [11] M. Glickstein, Golgi and Cajal: The neuron doctrine and the 100th anniversary of the 1906 Nobel Prize, Current Biology, 16 (2006): R147-R151.
  • [12] D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
  • [13] J. Guckenheimer,R. A. Oliva, Chaos in the Hodgkin-Huxley Model, SIAM Journal on Applied Dynamical Systems, 1 (2002): 105-114.
  • [14] J. Guckenheimer,J. S. Labouriau, Bifurcation of the Hodgkin and Huxley equations: A new twist, Bulletin of Mathematical Biology, 55 (1993): 937-952.
  • [15] B. Hassard, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon, Journal of Theoretical Biology, 71 (1978): 401-420.
  • [16] J. S. Hestheaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, 2007.
  • [17] A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon, The Journal of physiology, 107 (1948): 165-181.
  • [18] A. L. Hodgkin,A. F. Huxley, Propagation of electrical signals along giant nerve fibres, Proceedings of the Royal Society of London. Series B, Biological Sciences, 140 (1952): 177-183.
  • [19] E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT press, 2007.
  • [20] S. Karkar,B. Cochelin,C. Vergez, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, Journal of Sound and Vibration, 333 (2004): 2554-2567.
  • [21] J. P. Keener and J. Sneyd, Mathematical Physiology, Springer, 1998.
  • [22] J. Kierzenka,L. F. Shampine, A BVP solver based on residual control and the Matlab PSE, ACM Transactions on Mathematical Software (TOMS), 27 (2001): 299-316.
  • [23] K. S. Kundert, J. K. White and A. Sangiovanni-Vicentelli, Steady-state Methods for Simulating Analog and Microwave Circuits, Kluwer Academic Publishers Boston, 1990.
  • [24] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 1998.
  • [25] V. Lanza,M. Bonnin,M. Gilli, On the application of the describing function technique to the bifurcation analysis of nonlinear systems, IEEE, Trans. Circuits Systems II Express Briefs, 54 (2007): 343-347.
  • [26] V. Lanza, L. Ponta, M. Bonnin and F. Corinto, Multiple attractors and bifurcations in hard oscillators driven by constant inputs, International Journal of Bifurcation and Chaos, 22 (2012), 1250267, 16pp.
  • [27] A. I. Mees, Dynamics of Feedback Systems, Wiley Ltd., Chirchester, 1981.
  • [28] R. E. Mickens, Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods, World Scientific, 2010.
  • [29] N. Minorsky, Nonlinear Oscillations, Krieger, Huntington, New York, 1974.
  • [30] C. Piccardi, Bifurcation analysis via harmonic balance in periodic systems with feedback structure, International Journal of Control, 62 (1995): 1507-1515.
  • [31] S. Ramon and Y. Cajal, Textura del Sistema Nervioso del Hombre y de los Vertebrados, Imprenta y Librería de Nicolás Moya, Madrid, 1899.
  • [32] J. Rinzel,R. N. Miller, Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations, Mathematical Biosciences, 49 (1980): 27-59.
  • [33] A. Scott, Neuroscience: A mathematical Primer, Springer, 2002.
  • [34] L. F. Shampine,J. Kierzenka,M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, Tutorial notes, 49 (2000): 437-448.
  • [35] H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure, Cambridge University Press, 1988.
  • [36] M. Urabe, Galerkin's procedure for nonlinear periodic systems, Archive for Rational Mechanics and Analysis, 20 (1965): 120-152.
  • [37] X. Wang and J. Rinzel, Oscillatory and bursting properties of neurons, in The handbook ofbrain theory and neural networks, MIT Press, (1998), 686–691.
  • [38] A. Zygmund, Trigonometric Series, Cambridge University Press, 2002.

 

This article has been cited by

  • 1. Lois Naudin, Nathalie Corson, M. A. Aziz-Alaoui, Juan Luis Jimenez Laredo, Thibaut Demare, On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabditis Elegans, International Journal of Neural Systems, 2020, 10.1142/S012906572050063X

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved