Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A multi-base harmonic balance method applied to Hodgkin-Huxley model

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

Our aim is to propose a new robust and manageable technique, called multi-base harmonic balance method, to detect and characterize the periodic solutions of a nonlinear dynamical system. Our case test is the Hodgkin-Huxley model, one of the most realistic neuronal models in literature. This system, depending on the value of the external stimuli current, exhibits periodic solutions, both stable and unstable.
  Article Metrics

Keywords Periodic solutions; harmonic balance method; Hodgkin-Huxley model

Citation: Aymen Balti, Valentina Lanza, Moulay Aziz-Alaoui. A multi-base harmonic balance method applied to Hodgkin-Huxley model. Mathematical Biosciences and Engineering, 2018, 15(3): 807-825. doi: 10.3934/mbe.2018036


  • [1] U. Asher,J. Christiansen,R. D. Russell, Collocation software for boundary-value ODEs, ACM Transactions on Mathematical Software (TOMS), 7 (1981): 209-222.
  • [2] U. Asher, R. Mattheij and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1995.
  • [3] G. Bader,U. Asher, A new basis implementation for a mixed order boundary value ODE solver, SIAM Journal on Scientific and Statistical Computing, 8 (1987): 483-500.
  • [4] M. Basso,R. Genesio,A. Tesi, A frequency method for predicting limit cycle bifurcations, Nonlinear Dynamics, 13 (1997): 339-360.
  • [5] F. Bonani,M. Gilli, Analysis of stability and bifurcations of limit cycles in Chua's circuit through the harmonic-balance approach, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999): 881-890.
  • [6] T. H. Bullock,M. V. L. Bennett,D. Johnston,R. Josephson,E. Marder,R. D. Fields, The neuron doctrine, Redux, Science, 310 (1999): 791-793,2005.
  • [7] T. Chan,H. B. Keller, Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems, SIAM Journal on Scientific and Statistical Computing, 3 (1982): 173-194.
  • [8] E. Doedel,H. B. Keller,J. P. Kernevez, Numerical analysis and control of bifurcation problems (I): Bifurcation in finite dimensions, International journal of bifurcation and chaos, 1 (1991): 493-520.
  • [9] S. Doi,S. Nabetani,S. Kumagai, Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes, Biological cybernetics, 85 (2001): 51-64.
  • [10] M. Farkas, Periodic Motions, Springer-Verlag, New York, 1994.
  • [11] M. Glickstein, Golgi and Cajal: The neuron doctrine and the 100th anniversary of the 1906 Nobel Prize, Current Biology, 16 (2006): R147-R151.
  • [12] D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
  • [13] J. Guckenheimer,R. A. Oliva, Chaos in the Hodgkin-Huxley Model, SIAM Journal on Applied Dynamical Systems, 1 (2002): 105-114.
  • [14] J. Guckenheimer,J. S. Labouriau, Bifurcation of the Hodgkin and Huxley equations: A new twist, Bulletin of Mathematical Biology, 55 (1993): 937-952.
  • [15] B. Hassard, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon, Journal of Theoretical Biology, 71 (1978): 401-420.
  • [16] J. S. Hestheaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, 2007.
  • [17] A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon, The Journal of physiology, 107 (1948): 165-181.
  • [18] A. L. Hodgkin,A. F. Huxley, Propagation of electrical signals along giant nerve fibres, Proceedings of the Royal Society of London. Series B, Biological Sciences, 140 (1952): 177-183.
  • [19] E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT press, 2007.
  • [20] S. Karkar,B. Cochelin,C. Vergez, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, Journal of Sound and Vibration, 333 (2004): 2554-2567.
  • [21] J. P. Keener and J. Sneyd, Mathematical Physiology, Springer, 1998.
  • [22] J. Kierzenka,L. F. Shampine, A BVP solver based on residual control and the Matlab PSE, ACM Transactions on Mathematical Software (TOMS), 27 (2001): 299-316.
  • [23] K. S. Kundert, J. K. White and A. Sangiovanni-Vicentelli, Steady-state Methods for Simulating Analog and Microwave Circuits, Kluwer Academic Publishers Boston, 1990.
  • [24] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 1998.
  • [25] V. Lanza,M. Bonnin,M. Gilli, On the application of the describing function technique to the bifurcation analysis of nonlinear systems, IEEE, Trans. Circuits Systems II Express Briefs, 54 (2007): 343-347.
  • [26] V. Lanza, L. Ponta, M. Bonnin and F. Corinto, Multiple attractors and bifurcations in hard oscillators driven by constant inputs, International Journal of Bifurcation and Chaos, 22 (2012), 1250267, 16pp.
  • [27] A. I. Mees, Dynamics of Feedback Systems, Wiley Ltd., Chirchester, 1981.
  • [28] R. E. Mickens, Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods, World Scientific, 2010.
  • [29] N. Minorsky, Nonlinear Oscillations, Krieger, Huntington, New York, 1974.
  • [30] C. Piccardi, Bifurcation analysis via harmonic balance in periodic systems with feedback structure, International Journal of Control, 62 (1995): 1507-1515.
  • [31] S. Ramon and Y. Cajal, Textura del Sistema Nervioso del Hombre y de los Vertebrados, Imprenta y Librería de Nicolás Moya, Madrid, 1899.
  • [32] J. Rinzel,R. N. Miller, Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations, Mathematical Biosciences, 49 (1980): 27-59.
  • [33] A. Scott, Neuroscience: A mathematical Primer, Springer, 2002.
  • [34] L. F. Shampine,J. Kierzenka,M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, Tutorial notes, 49 (2000): 437-448.
  • [35] H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure, Cambridge University Press, 1988.
  • [36] M. Urabe, Galerkin's procedure for nonlinear periodic systems, Archive for Rational Mechanics and Analysis, 20 (1965): 120-152.
  • [37] X. Wang and J. Rinzel, Oscillatory and bursting properties of neurons, in The handbook ofbrain theory and neural networks, MIT Press, (1998), 686–691.
  • [38] A. Zygmund, Trigonometric Series, Cambridge University Press, 2002.


This article has been cited by

  • 1. Lois Naudin, Nathalie Corson, M. A. Aziz-Alaoui, Juan Luis Jimenez Laredo, Thibaut Demare, On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabditis Elegans, International Journal of Neural Systems, 2020, 10.1142/S012906572050063X

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved