Mathematical analysis of a model for glucose regulation

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 92B; Secondary: 92C60.

  • Diabetes affects millions of Americans, and the correct identification of individuals afflicted with this disease, especially of those in early stages or in progression towards diabetes, remains an active area of research. The minimal model is a simplified mathematical construct for understanding glucose-insulin interactions. Developed by Bergman, Cobelli, and colleagues over three decades ago [7,8], this system of coupled ordinary differential equations prevails as an important tool for interpreting data collected during an intravenous glucose tolerance test (IVGTT). In this study we present an explicit solution to the minimal model which allows for separating the glucose and insulin dynamics of the minimal model and for identifying patient-specific parameters of glucose trajectories from IVGTT. As illustrated with patient data, our approach seems to have an edge over more complicated methods currently used. Additionally, we also present an application of our method to prediction of the time to baseline recovery and calculation of insulin sensitivity and glucose effectiveness, two quantities regarded as significant in diabetes diagnostics.

    Citation: Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 83-99. doi: 10.3934/mbe.2016.13.83

    Related Papers:

    [1] Xiangyun Shi, Qi Zheng, Jiaoyan Yao, Jiaxu Li, Xueyong Zhou . Analysis of a stochastic IVGTT glucose-insulin model with time delay. Mathematical Biosciences and Engineering, 2020, 17(3): 2310-2329. doi: 10.3934/mbe.2020123
    [2] Anarina L. Murillo, Jiaxu Li, Carlos Castillo-Chavez . Modeling the dynamics of glucose, insulin, and free fatty acids with time delay: The impact of bariatric surgery on type 2 diabetes mellitus. Mathematical Biosciences and Engineering, 2019, 16(5): 5765-5787. doi: 10.3934/mbe.2019288
    [3] Micaela Morettini, Christian Göbl, Alexandra Kautzky-Willer, Giovanni Pacini, Andrea Tura, Laura Burattini . Former gestational diabetes: Mathematical modeling of intravenous glucose tolerance test for the assessment of insulin clearance and its determinants. Mathematical Biosciences and Engineering, 2020, 17(2): 1604-1615. doi: 10.3934/mbe.2020084
    [4] Weijiu Liu . A mathematical model for the robust blood glucose tracking. Mathematical Biosciences and Engineering, 2019, 16(2): 759-781. doi: 10.3934/mbe.2019036
    [5] Danilo T. Pérez-Rivera, Verónica L. Torres-Torres, Abraham E. Torres-Colón, Mayteé Cruz-Aponte . Development of a computational model of glucose toxicity in the progression of diabetes mellitus. Mathematical Biosciences and Engineering, 2016, 13(5): 1043-1058. doi: 10.3934/mbe.2016029
    [6] Weijie Wang, Shaoping Wang, Yixuan Geng, Yajing Qiao, Teresa Wu . An OGI model for personalized estimation of glucose and insulin concentration in plasma. Mathematical Biosciences and Engineering, 2021, 18(6): 8499-8523. doi: 10.3934/mbe.2021420
    [7] Lela Dorel . Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences and Engineering, 2011, 8(2): 549-560. doi: 10.3934/mbe.2011.8.549
    [8] Hugo Flores-Arguedas, Marcos A. Capistrán . Bayesian analysis of Glucose dynamics during the Oral Glucose Tolerance Test (OGTT). Mathematical Biosciences and Engineering, 2021, 18(4): 4628-4647. doi: 10.3934/mbe.2021235
    [9] Virginia González-Vélez, Amparo Gil, Iván Quesada . Minimal state models for ionic channels involved in glucagon secretion. Mathematical Biosciences and Engineering, 2010, 7(4): 793-807. doi: 10.3934/mbe.2010.7.793
    [10] Lingmin Lin, Kailai Liu, Huan Feng, Jing Li, Hengle Chen, Tao Zhang, Boyun Xue, Jiarui Si . Glucose trajectory prediction by deep learning for personal home care of type 2 diabetes mellitus: modelling and applying. Mathematical Biosciences and Engineering, 2022, 19(10): 10096-10107. doi: 10.3934/mbe.2022472
  • Diabetes affects millions of Americans, and the correct identification of individuals afflicted with this disease, especially of those in early stages or in progression towards diabetes, remains an active area of research. The minimal model is a simplified mathematical construct for understanding glucose-insulin interactions. Developed by Bergman, Cobelli, and colleagues over three decades ago [7,8], this system of coupled ordinary differential equations prevails as an important tool for interpreting data collected during an intravenous glucose tolerance test (IVGTT). In this study we present an explicit solution to the minimal model which allows for separating the glucose and insulin dynamics of the minimal model and for identifying patient-specific parameters of glucose trajectories from IVGTT. As illustrated with patient data, our approach seems to have an edge over more complicated methods currently used. Additionally, we also present an application of our method to prediction of the time to baseline recovery and calculation of insulin sensitivity and glucose effectiveness, two quantities regarded as significant in diabetes diagnostics.


    [1] CPT: Pharmacometrics & Systems Pharmacology, 2 (2013), 1-14.
    [2] Diabetes Care, 37 (2014), S14-S80.
    [3] Eur J Intern Med, 22 (2011), 8-12.
    [4] Diabetes, 38 (1989), 1512-1527.
    [5] in Mathematical Modeling in Nutrition and the Health Sciences (eds. J. A. Novotny, M. H. Green and R. C. Boston), Advances in Experimental Medicine and Biology, Kluwer Academic/Plenum, New York, 537 (2003), 1-19.
    [6] Horm Res, 64 (2005), 8-15.
    [7] Am J Physiol, 236 (1979), E667-E677.
    [8] J Clin Invest, 68 (1981), 1456-1467.
    [9] Diabetes Care, 15 (1992), 1313-1316.
    [10] J. Vet Intern Med., 11 (1997), 86-91.
    [11] Diabetes Care, 31 (2008), 1697-1703.
    [12] Diabetes Care, 34 (2011), S184-S190.
    [13] in Mathematical Modeling in Nutrition and the Health Sciences (eds. J. A. Novotny, M. H. Green and R. C. Boston), Advances in Experimental Medicine and Biology, Kluwer Academic/Plenum, New York, 2003, 21-42.
    [14] Diabetes technology & therapeutics, 5 (2003), 1003-1015.
    [15] BioMedical Engineering OnLine, 5 (2006), p43.
    [16] J Clin Endocrinol Metab, 85 (2000), 4396-4402.
    [17] information in diabetes and prediabetes in the United States, 2011.
    [18] J Pediatr, 138 (2001), 244-249.
    [19] Diabetes Care, 32 (2009), 2027-2032.
    [20] Diabetes Care, 34 (2011), 145-150.
    [21] J Math Bio, 40 (2000), 136-168.
    [22] Int J Clin Pract, 62 (2008), 642-648.
    [23] Diabetes, 57 (2008), 1638-1644.
    [24] Theor Biol Med Model, 8 (2011), p12.
    [25] Discrete and Continuous Dynamical Systems - Series B, 1 (2001), 103-124.
    [26] Diabetes Care, 35 (2012), 868-872.
    [27] Am J Physiol Endocrinol Metab, 294 (2008), E15-E26.
    [28] Diabetes Care, 30 (2007), 753-759.
    [29] BioMedical Engineering OnLine, 5 (2006), 44-57.
    [30] J Clin Endocrinol Metab, 79 (1994), 217-222.
    [31] Comput Meth Prog Bio, 23 (1986), 113-122.
    [32] in Data-driven Modeling for Diabetes (eds. V. Marmarelis and G. Mitsis), Lecture Notes in Bioengineering, Springer Berlin Heidelberg, 2014, 117-129.
    [33] Lancet, 365 (2005), 1333-1346.
    [34] BIOMIM & Control Systems, 1-21.
    [35] http://bmi.bmt.tue.nl/sysbio/parameter_estimation/gluc_mm_mle2012.m, 2012, Accessed: 2015-02-24.
    [36] Diabetes Care, 24 (2001), 1275-1279.
  • This article has been cited by:

    1. Mohammad Munir, Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test, 2018, 300, 00255564, 14, 10.1016/j.mbs.2018.03.014
    2. Jennifer J. Ormsbee, Hannah J. Burden, Jennifer L. Knopp, J. Geoffrey Chase, Rinki Murphy, Peter R. Shepherd, Troy Merry, Variability in Estimated Modelled Insulin Secretion, 2021, 1932-2968, 193229682199112, 10.1177/1932296821991120
    3. Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Vincent Dusabejambo, Immaculate Kambutse, Eric Rutaganda, Analysis of physical activity effects on plasma glucose–insulin system dynamics: A mathematical model, 2021, 43, 0142-3312, 3272, 10.1177/01423312211022867
    4. Weijie Wang, Shaoping Wang, Yixuan Geng, Yajing Qiao, Teresa Wu, An OGI model for personalized estimation of glucose and insulin concentration in plasma, 2021, 18, 1551-0018, 8499, 10.3934/mbe.2021420
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5250) PDF downloads(901) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog