A nosocomial epidemic model with infection of patients due to contaminated rooms

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 92C60; Secondary: 34D20.

  • A model of epidemic bacterial infections in hospitals is developed. The model incorporates the infection of patients and the contamination of healthcare workers due to environmental causes. The model is analyzed with respect to the asymptotic behavior of solutions. The model is interpreted to provide insight for controlling these nosocomial epidemics.

    Citation: Cameron Browne, Glenn F. Webb. A nosocomial epidemic model with infection of patients due to contaminated rooms[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 761-787. doi: 10.3934/mbe.2015.12.761

    Related Papers:

    [1] J. Amador, D. Armesto, A. Gómez-Corral . Extreme values in SIR epidemic models with two strains and cross-immunity. Mathematical Biosciences and Engineering, 2019, 16(4): 1992-2022. doi: 10.3934/mbe.2019098
    [2] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [3] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [4] Jianquan Li, Xiaoyu Huo, Yuming Chen . Threshold dynamics of a viral infection model with defectively infected cells. Mathematical Biosciences and Engineering, 2022, 19(7): 6489-6503. doi: 10.3934/mbe.2022305
    [5] Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón . A within-host model on the interactions of sensitive and resistant Helicobacter pylori to antibiotic therapy considering immune response. Mathematical Biosciences and Engineering, 2025, 22(1): 185-224. doi: 10.3934/mbe.2025009
    [6] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [7] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [8] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [9] Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426
    [10] Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547
  • A model of epidemic bacterial infections in hospitals is developed. The model incorporates the infection of patients and the contamination of healthcare workers due to environmental causes. The model is analyzed with respect to the asymptotic behavior of solutions. The model is interpreted to provide insight for controlling these nosocomial epidemics.


    [1] Journal of biological dynamics, 6 (2012), 923-940.
    [2] Journal of Dynamics and Differential Equations, 6 (1994), 583-600.
    [3] The journal of physical chemistry, 81 (1977), 2340-2361.
    [4] Journal of Infectious Diseases, 193 (2006), 1473-1474.
    [5] Scientific American, 307 (2012), 30-31.
    [6] Critical care medicine, 40 (2012), 1045-1051.
    [7] Clinical Microbiology and Infection, 17 (2011), 1201-1208.
    [8] geneva, switzerland: Who, 2014, 2014.
    [9] Acta stomatologica Naissi, 29 (2013), 1265-1272.
    [10] BMC infectious diseases, 13 (2013), p595.
    [11] Journal of mathematical biology, 67 (2013), 1067-1082.
    [12] SIAM Journal on Applied Mathematics, 73 (2013), 1513-1532.
    [13] Cambridge university press, 1995.
    [14] American journal of infection control, 40 (2012), 1005-1007.
    [15] URL http://www.pbs.org/wgbh/pages/frontline/health-science-technology/hunting-the-nightmare-bacteria/a-superbug-outbreak-at-nih/l.
    [16] Mathematical biosciences, 180 (2002), 29-48.
    [17] Journal of theoretical biology, 293 (2012), 161-173.
    [18] Mathematical biosciences, 241 (2013), 115-124.
    [19] Infectious Diseases: Research and Treatment, 1 (2008), 3-11.
  • This article has been cited by:

    1. József Z. Farkas, A. Morozov, Net reproduction functions for nonlinear structured population models, 2018, 13, 0973-5348, 32, 10.1051/mmnp/2018036
    2. Xi Huo, Modeling Antibiotic Use Strategies in Intensive Care Units: Comparing De-escalation and Continuation, 2020, 82, 0092-8240, 10.1007/s11538-019-00686-x
    3. J.M. Cushing, Odo Diekmann, The many guises of R0 (a didactic note), 2016, 404, 00225193, 295, 10.1016/j.jtbi.2016.06.017
    4. Glenn F. Webb, Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units, 2017, 22, 1553-524X, 1145, 10.3934/dcdsb.2017056
    5. Selenne Banuelos, Hayriye Gulbudak, Mary Ann Horn, Qimin Huang, Aadrita Nandi, Hwayeon Ryu, Rebecca Segal, 2021, Chapter 6, 978-3-030-57128-3, 111, 10.1007/978-3-030-57129-0_6
    6. Valentin Leducq, Aude Jary, Antoine Bridier-Nahmias, Lena Daniel, Karen Zafilaza, Florence Damond, Valérie Goldstein, Audrey Duval, François Blanquart, Vincent Calvez, Diane Descamps, Anne-Geneviève Marcelin, Benoit Visseaux, Nosocomial transmission clusters and lineage diversity characterized by SARS-CoV-2 genomes from two large hospitals in Paris, France, in 2020, 2022, 12, 2045-2322, 10.1038/s41598-022-05085-2
    7. Y. A. Terefe, S. M. Kassa, J. B. H. Njagarah, Impact of the WHO Integrated Stewardship Policy on the Control of Methicillin-Resistant Staphyloccus aureus and Third-Generation Cephalosporin-Resistant Escherichia coli: Using a Mathematical Modeling Approach, 2022, 84, 0092-8240, 10.1007/s11538-022-01051-1
    8. Patrick De Leenheer, Zachary Gregg, Jordan McCaslin, Some limitations on the use of the basic reproduction number, 2024, 1023-6198, 1, 10.1080/10236198.2024.2308110
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2798) PDF downloads(584) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog