Global stability of a multi-group model with vaccination age, distributed delay and random perturbation

  • Received: 01 September 2014 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : 34E10, 37H10, 92D25, 93D20.

  • A multi-group epidemic model withdistributed delay and vaccination age has been formulated and studied.Mathematical analysis shows that the global dynamics of the model is determinedby the basic reproduction number $\mathcal{R}_0$:the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0\leq1$,and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$.Lyapunov functionals are constructed by the non-negative matrix theory and a novel grouping techniqueto establish the global stability.The stochastic perturbation of the model is studied and it is provedthat the endemic equilibrium of the stochastic model is stochastically asymptotically stablein the large under certain conditions.

    Citation: Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1083-1106. doi: 10.3934/mbe.2015.12.1083

    Related Papers:

  • A multi-group epidemic model withdistributed delay and vaccination age has been formulated and studied.Mathematical analysis shows that the global dynamics of the model is determinedby the basic reproduction number $\mathcal{R}_0$:the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0\leq1$,and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$.Lyapunov functionals are constructed by the non-negative matrix theory and a novel grouping techniqueto establish the global stability.The stochastic perturbation of the model is studied and it is provedthat the endemic equilibrium of the stochastic model is stochastically asymptotically stablein the large under certain conditions.
    加载中
    [1] Rocky Mount. J. Math., 9 (1979), 31-42.
    [2] J. Math. Biol., 33 (1995), 250-260.
    [3] Nonlinear Anal.: Real World Appl., 13 (2012), 1581-1592.
    [4] Math. Biosci., 28 (1976), 221-236.
    [5] Nonlinear Anal.: Real World Appl., 12 (2011), 1991-1997.
    [6] Appl. Math. Comput., 218 (2011), 280-286.
    [7] Appl. Math. Comput., 218 (2011), 4391-4400.
    [8] Nonlinear Anal.: Real World Appl., 14 (2013), 1135-1143.
    [9] Canad. Appl. Math. Quart., 14 (2006), 259-284.
    [10] Proc. Amer. Math. Soc., 136 (2008), 2793-2802.
    [11] J. Differential Equations, 248 (2010), 1-20.
    [12] Math. Biosci. Eng., 9 (2012), 393-411.
    [13] Nonlinear Anal.: Real World Appl., 12 (2011), 2163-2173.
    [14] Science, 265 (1994), 1451-1454.
    [15] Nonlinear Anal.: Real World Appl., 11 (2010), 4154-4163.
    [16] Appl. Math. Comput., 214 (2009), 381-390.
    [17] Appl. Math. Model., 36 (2012), 908-923.
    [18] Math. Biosci., 195 (2005), 23-46.
    [19] Appl. Math. Model., 34 (2010), 437-450.
    [20] Appl. Math. Comput., 226 (2014), 528-540.
    [21] J. Franklin Inst., 297 (1974), 325-333.
    [22] Philadelphia: Society for industrial and applied mathematics, 1975.
    [23] W. A. Benjamin, New York, 1971.
    [24] Funkcial. Ekvac., 31 (1988), 331-347.
    [25] Springer-Verlag, New York, 1993.
    [26] J. Math. Biol., 28 (1990), 365-382.
    [27] J. Differential Equations, 48 (1983), 95-122.
    [28] J. Integral Equations, 10 (1985), 123-136.
    [29] Ph.D. thesis, University of Nottingham, 2008.
    [30] Science, 197 (1977), 463-465.
    [31] Stoch Process Appl., 97 (2002), 95-110.
    [32] J Math Anal Appl., 341 (2008), 1084-1101.
    [33] Phys A: Stat Mech Appl., 390 (2011), 1747-1762.
    [34] Appl. Math. Comput., 238 (2014), 300-318.
    [35] Commun Nonlinear Sci Numer Simulat., 19 (2014), 3444-3453.
    [36] Math. Biosci. Eng., 11 (2014), 1003-1025.
    [37] Chichester: Horwood publishing, 1997.
    [38] SIAM Rev., 43 (2001), 525-546.

    © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
  • Reader Comments
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10) PDF downloads(482) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog