Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
[1] | Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130 |
[2] | Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135 |
[3] | Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395 |
[4] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[5] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[6] | Haitao Song, Weihua Jiang, Shengqiang Liu . Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences and Engineering, 2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185 |
[7] | Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson . An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 267-288. doi: 10.3934/mbe.2004.1.267 |
[8] | Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457 |
[9] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[10] | Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627 |
[1] | Oxford University Press, Oxford, 1992. |
[2] | Science, 286 (1999), 509-511. |
[3] | Journal of Theoretical Biology, 235 (2005), 275-288. |
[4] | J. Phys. A: Math. Theor., 40 (2007), 8607-8619. |
[5] | e-print cond-mat/0301149, (2003). |
[6] | J. Math. Biol., 28 (1990), 257-270. |
[7] | in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of Epidemics, 1, Wuerz, Winnipeg, 1993, 33-50. |
[8] | Applied Mathematics and Computation, 197 (2008), 345-357. |
[9] | J. Math. Biol., 30 (1992), 717-731. |
[10] | Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 15124. |
[11] | J. Math. Anal. Appl., 308 (2005), 343-364. |
[12] | Phys. Rev. E, 69 (2004), 066105. |
[13] | J. R. Soc. Interface, 2 (2005), 295-307. |
[14] | Princeton University Press, 2007. |
[15] | Proc. R. Soc. A, 115 (1927), 700-711. |
[16] | Mathematical Biosciences, 203 (2006), 124-136. |
[17] | Bulletin of Mathematical Biology, 71 (2009), 888-905. |
[18] | Physica D, 238 (2009), 370-378. |
[19] | World Scientific, 2009. |
[20] | Phys. Rev. E, 64 (2001), 066112. |
[21] | Eur. Phys. J. B, 26 (2002), 521-529. |
[22] | Phys. Rev. E, 70 (2004), 030902. |
[23] | Phys. Rev. E, 63 (2001), 066117. |
[24] | Phys. Rev. Let., 86 (2001), 3200. |
[25] | IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245-257. |
[26] | Phys. Rev. E, 77 (2008), 066101. |
[27] | SIAM J. Appl. Math., 46 (1986), 368-375. |
[28] | Rocky Mountain J. Math., 24 (1994), 351-380. |
[29] | Mathematical Biosciences, 180 (2002), 29-48. |
[30] | Siam J. Appl. Math., 68 (2008), 1495-1502. |
[31] | Mathematical Biosciences, 190 (2004), 97-112. |
[32] | Springer-Verlag, New York, 2003. |
[33] | Canad. Appl. Math. Quart., 4 (1996), 421-444. |
1. | Fathalla A. Rihan, Duaa H. Abdel Rahman, Delay differential model for tumour–immune dynamics with HIV infection of CD4+T-cells, 2013, 90, 0020-7160, 594, 10.1080/00207160.2012.726354 | |
2. | Jorge Duarte, Cristina Januário, Nuno Martins, C. Correia Ramos, Carla Rodrigues, Josep Sardanyés, Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, 2018, 77, 1017-1398, 261, 10.1007/s11075-017-0314-0 | |
3. | Jie Lou, Tommaso Ruggeri, A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior, 2007, 56, 0035-5038, 195, 10.1007/s11587-007-0013-6 | |
4. | Qingzhi Wen, Jie Lou, The global dynamics of a model about HIV-1 infection in vivo, 2009, 58, 0035-5038, 77, 10.1007/s11587-009-0048-y | |
5. | Parvaiz Ahmad Naik, Kolade M. Owolabi, Mehmet Yavuz, Jian Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, 2020, 140, 09600779, 110272, 10.1016/j.chaos.2020.110272 | |
6. | Joseph Páez Chávez, Burcu Gürbüz, Carla M.A. Pinto, The effect of aggressive chemotherapy in a model for HIV/AIDS-cancer dynamics, 2019, 75, 10075704, 109, 10.1016/j.cnsns.2019.03.021 | |
7. | F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, 2014, 232, 00963003, 606, 10.1016/j.amc.2014.01.111 | |
8. | Ana R. M. Carvalho, Carla M. A. Pinto, New developments on AIDS-related cancers: The role of the delay and treatment options, 2018, 41, 01704214, 8915, 10.1002/mma.4657 | |
9. | A delay-differential equation model of HIV related cancer--immune system dynamics, 2011, 8, 1551-0018, 627, 10.3934/mbe.2011.8.627 | |
10. | Zulqurnain Sabir, Salem Ben Said, Qasem Al-Mdallal, Artificial intelligent solvers for the HIV-1 system including AIDS based on the cancer cells, 2023, 26673053, 200309, 10.1016/j.iswa.2023.200309 | |
11. | José García Otero, Mariusz Bodzioch, Juan Belmonte-Beitia, On the dynamics and optimal control of a mathematical model of neuroblastoma and its treatment: Insights from a mathematical model, 2024, 34, 0218-2025, 1235, 10.1142/S0218202524500210 | |
12. | Zulqurnain Sabir, Sahar Dirani, Sara Bou Saleh, Mohamad Khaled Mabsout, Adnène Arbi, A Novel Radial Basis and Sigmoid Neural Network Combination to Solve the Human Immunodeficiency Virus System in Cancer Patients, 2024, 12, 2227-7390, 2490, 10.3390/math12162490 | |
13. | Haneche Nabil, Tayeb Hamaizia, A three-dimensional discrete fractional-order HIV-1 model related to cancer cells, dynamical analysis and chaos control, 2024, 4, 2791-8564, 256, 10.53391/mmnsa.1484994 | |
14. | Beiqi Li, Li Zu, Quan Wang, Jiangdi Li, Dynamic behavioral analysis of a stochastic HIV model with cancer cells, 2025, 00160032, 107882, 10.1016/j.jfranklin.2025.107882 |