Epidemic models for complex networks with demographics

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.

    Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295

    Related Papers:

    [1] Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130
    [2] Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135
    [3] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [4] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [5] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [6] Haitao Song, Weihua Jiang, Shengqiang Liu . Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences and Engineering, 2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185
    [7] Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson . An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 267-288. doi: 10.3934/mbe.2004.1.267
    [8] Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457
    [9] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [10] Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627
  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.


    [1] Oxford University Press, Oxford, 1992.
    [2] Science, 286 (1999), 509-511.
    [3] Journal of Theoretical Biology, 235 (2005), 275-288.
    [4] J. Phys. A: Math. Theor., 40 (2007), 8607-8619.
    [5] e-print cond-mat/0301149, (2003).
    [6] J. Math. Biol., 28 (1990), 257-270.
    [7] in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of Epidemics, 1, Wuerz, Winnipeg, 1993, 33-50.
    [8] Applied Mathematics and Computation, 197 (2008), 345-357.
    [9] J. Math. Biol., 30 (1992), 717-731.
    [10] Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 15124.
    [11] J. Math. Anal. Appl., 308 (2005), 343-364.
    [12] Phys. Rev. E, 69 (2004), 066105.
    [13] J. R. Soc. Interface, 2 (2005), 295-307.
    [14] Princeton University Press, 2007.
    [15] Proc. R. Soc. A, 115 (1927), 700-711.
    [16] Mathematical Biosciences, 203 (2006), 124-136.
    [17] Bulletin of Mathematical Biology, 71 (2009), 888-905.
    [18] Physica D, 238 (2009), 370-378.
    [19] World Scientific, 2009.
    [20] Phys. Rev. E, 64 (2001), 066112.
    [21] Eur. Phys. J. B, 26 (2002), 521-529.
    [22] Phys. Rev. E, 70 (2004), 030902.
    [23] Phys. Rev. E, 63 (2001), 066117.
    [24] Phys. Rev. Let., 86 (2001), 3200.
    [25] IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245-257.
    [26] Phys. Rev. E, 77 (2008), 066101.
    [27] SIAM J. Appl. Math., 46 (1986), 368-375.
    [28] Rocky Mountain J. Math., 24 (1994), 351-380.
    [29] Mathematical Biosciences, 180 (2002), 29-48.
    [30] Siam J. Appl. Math., 68 (2008), 1495-1502.
    [31] Mathematical Biosciences, 190 (2004), 97-112.
    [32] Springer-Verlag, New York, 2003.
    [33] Canad. Appl. Math. Quart., 4 (1996), 421-444.
  • This article has been cited by:

    1. Fathalla A. Rihan, Duaa H. Abdel Rahman, Delay differential model for tumour–immune dynamics with HIV infection of CD4+T-cells, 2013, 90, 0020-7160, 594, 10.1080/00207160.2012.726354
    2. Jorge Duarte, Cristina Januário, Nuno Martins, C. Correia Ramos, Carla Rodrigues, Josep Sardanyés, Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, 2018, 77, 1017-1398, 261, 10.1007/s11075-017-0314-0
    3. Jie Lou, Tommaso Ruggeri, A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior, 2007, 56, 0035-5038, 195, 10.1007/s11587-007-0013-6
    4. Qingzhi Wen, Jie Lou, The global dynamics of a model about HIV-1 infection in vivo, 2009, 58, 0035-5038, 77, 10.1007/s11587-009-0048-y
    5. Parvaiz Ahmad Naik, Kolade M. Owolabi, Mehmet Yavuz, Jian Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, 2020, 140, 09600779, 110272, 10.1016/j.chaos.2020.110272
    6. Joseph Páez Chávez, Burcu Gürbüz, Carla M.A. Pinto, The effect of aggressive chemotherapy in a model for HIV/AIDS-cancer dynamics, 2019, 75, 10075704, 109, 10.1016/j.cnsns.2019.03.021
    7. F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, 2014, 232, 00963003, 606, 10.1016/j.amc.2014.01.111
    8. Ana R. M. Carvalho, Carla M. A. Pinto, New developments on AIDS-related cancers: The role of the delay and treatment options, 2018, 41, 01704214, 8915, 10.1002/mma.4657
    9. A delay-differential equation model of HIV related cancer--immune system dynamics, 2011, 8, 1551-0018, 627, 10.3934/mbe.2011.8.627
    10. Zulqurnain Sabir, Salem Ben Said, Qasem Al-Mdallal, Artificial intelligent solvers for the HIV-1 system including AIDS based on the cancer cells, 2023, 26673053, 200309, 10.1016/j.iswa.2023.200309
    11. José García Otero, Mariusz Bodzioch, Juan Belmonte-Beitia, On the dynamics and optimal control of a mathematical model of neuroblastoma and its treatment: Insights from a mathematical model, 2024, 34, 0218-2025, 1235, 10.1142/S0218202524500210
    12. Zulqurnain Sabir, Sahar Dirani, Sara Bou Saleh, Mohamad Khaled Mabsout, Adnène Arbi, A Novel Radial Basis and Sigmoid Neural Network Combination to Solve the Human Immunodeficiency Virus System in Cancer Patients, 2024, 12, 2227-7390, 2490, 10.3390/math12162490
    13. Haneche Nabil, Tayeb Hamaizia, A three-dimensional discrete fractional-order HIV-1 model related to cancer cells, dynamical analysis and chaos control, 2024, 4, 2791-8564, 256, 10.53391/mmnsa.1484994
    14. Beiqi Li, Li Zu, Quan Wang, Jiangdi Li, Dynamic behavioral analysis of a stochastic HIV model with cancer cells, 2025, 00160032, 107882, 10.1016/j.jfranklin.2025.107882
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4177) PDF downloads(799) Cited by(47)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog