Citation: Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 861-872. doi: 10.3934/mbe.2013.10.861
[1] | Yifei Wang, Xinzhu Meng . Evolutionary game dynamics of cooperation in prisoner's dilemma with time delay. Mathematical Biosciences and Engineering, 2023, 20(3): 5024-5042. doi: 10.3934/mbe.2023233 |
[2] | Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461 |
[3] | Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743 |
[4] | Qingwen Hu . A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences and Engineering, 2018, 15(4): 863-882. doi: 10.3934/mbe.2018039 |
[5] | Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053 |
[6] | Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543 |
[7] | Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85 |
[8] | Andrei Korobeinikov, Conor Dempsey . A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences and Engineering, 2014, 11(4): 919-927. doi: 10.3934/mbe.2014.11.919 |
[9] | Changyong Dai, Haihong Liu, Fang Yan . The role of time delays in P53 gene regulatory network stimulated by growth factor. Mathematical Biosciences and Engineering, 2020, 17(4): 3794-3835. doi: 10.3934/mbe.2020213 |
[10] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[1] | Birkhäuser, Boston, 1997. |
[2] | Electron. J. Diff. Eqns., 10 (2003), 33-53. |
[3] | SIAM J. Appl. Math., 60 (1999), 371-391. |
[4] | Funkcj. Ekvacioj, 29 (1986), 77-90. |
[5] | J. Math. Anal. Appl., 254 (2001), 433-463. |
[6] | in "Proceedings of the Tenth National Conference Application of Mathematics in Biology and Medicine," Świçety Krzy.z, (2004), 13-18. |
[7] | in "Proceedings of the Eleventh National Conference Application of Mathematics in Biology and Medicine", Zawoja, (2005), 13-18. |
[8] | J. Appl. Anal., 11 (2005), 200-281. |
[9] | Math. Meth. Appl. Sci., 32 (2009), 2287-2308. |
[10] | Springer, 1977. |
[11] | Springer, 2002. |
[12] | Springer, 2003. |
[13] | Rev. Mod. Phys., 69 (1997), 1219-1267. |
1. | Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri, Modeling the Interplay Between Tumor Volume Regression and Oxygenation in Uterine Cervical Cancer During Radiotherapy Treatment, 2016, 20, 2168-2194, 596, 10.1109/JBHI.2015.2398512 | |
2. | Jean-Jacques Kengwoung-Keumo, Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation, 2016, 13, 1551-0018, 787, 10.3934/mbe.2016018 | |
3. | Urszula Foryś, Beata Zduniak, Two-stage model of carcinogenic mutations with the influence of delays, 2014, 19, 1553-524X, 2501, 10.3934/dcdsb.2014.19.2501 | |
4. | Marek Bodnar, Monika Joanna Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, 2016, 31, 10075704, 124, 10.1016/j.cnsns.2015.08.002 | |
5. | Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri, Kinetic Models for Predicting Cervical Cancer Response to Radiation Therapy on Individual Basis Using Tumor Regression MeasuredIn VivoWith Volumetric Imaging, 2016, 15, 1533-0346, 146, 10.1177/1533034615573796 | |
6. | A. Belfatto, M. Riboldi, D. Ciardo, A. Cecconi, R. Lazzari, B. A. Jereczek-Fossa, R. Orecchia, G. Baroni, P. Cerveri, Adaptive Mathematical Model of Tumor Response to Radiotherapy Based on CBCT Data, 2016, 20, 2168-2194, 802, 10.1109/JBHI.2015.2453437 | |
7. | Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, 2013, 220, 00963003, 277, 10.1016/j.amc.2013.05.077 | |
8. | Ishtiaq Ali, On the Numerical Solutions of One and Two-Stage Model of Carcinogenesis Mutations with Time Delay and Diffusion, 2013, 04, 2152-7385, 118, 10.4236/am.2013.410A2012 | |
9. | Vsevolod G. Sorokin, Andrei V. Vyazmin, Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration, 2022, 10, 2227-7390, 1886, 10.3390/math10111886 | |
10. | Andrei D. Polyanin, Vsevolod G. Sorokin, Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays, 2023, 11, 2227-7390, 516, 10.3390/math11030516 | |
11. | Larysa Dzyubak, Oleksandr Dzyubak, Jan Awrejcewicz, Nonlinear multiscale diffusion cancer invasion model with memory of states, 2023, 168, 09600779, 113091, 10.1016/j.chaos.2022.113091 | |
12. | Andrei D. Polyanin, Vsevolod G. Sorokin, Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay, 2023, 11, 2227-7390, 3111, 10.3390/math11143111 | |
13. | А. Д. Полянин, В. Г. Сорокин, РЕШЕНИЯ ЛИНЕЙНЫХ НАЧАЛЬНО-КРАЕВЫХ ЗАДАЧ РЕАКЦИОННО-ДИФФУЗИОННОГО ТИПА С ЗАПАЗДЫВАНИЕМ, 2023, 12, 2304-487X, 153, 10.26583/vestnik.2023.286 | |
14. | Ali Sadiq Alabdrabalnabi, Ishtiaq Ali, Stability analysis and simulations of tumor growth model based on system of reaction-diffusion equation in two-dimensions, 2024, 9, 2473-6988, 11560, 10.3934/math.2024567 |