Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475.

Primary: 37N25, 9008; Secondary: 68R01.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases

1. Los Alamos National Laboratory, Los Alamos, NM 87545
2. Tulane University, New Orleans, LA, 70118
3. Swiss Tropical and Public Health Institute, 4002 Basel

The spread of an infectious disease is sensitive to the contact patterns in the population and to precautions people take to reduce the transmission of the disease.We investigate the impact that different mixing assumptions have on the spread an infectious disease in an age-structured ordinary differential equation model. We consider the impact of heterogeneity in susceptibility and infectivity within the population on the disease transmission. We apply the analysis to the spread of a smallpox-like disease, derive the formula for the reproduction number, $\Re_{0}$, and based on this threshold parameter, show the level of human behavioral change required to control the epidemic.We analyze how different mixing patterns can affect the disease prevalence, the cumulative number of new infections, and the final epidemic size.Our analysis indicates that the combination of residual immunity and behavioral changes during a smallpox-like disease outbreak can play a key role in halting infectious disease spread; and that realistic mixing patterns must be included in the epidemic model for the predictions to accurately reflect reality.
  Figure/Table
  Supplementary
  Article Metrics

Keywords social networks; segregate mixing.; proportional mixing; reproduction number; Mathematical epidemiology; contact patterns

Citation: Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475

References

  • 1. Oxford Science Publications, Oxford University Press, USA, 1992.
  • 2. Japan Journal of Infectious Diseases, 55 (2002), 112-116.
  • 3. Scientific American, 292 (2005), 54-61.
  • 4. Mathematical Biosciences, 96 (1989), 221-238.
  • 5. The New England Journal of Medicine, 348 (2003), 416-425.
  • 6. IMA J. Math. Appl. Med. Biol., 8 (1991), 1-29.
  • 7. (2004). Available from: http://www.bt.cdc.gov/agent/smallpox/vaccination/clineval/ [Online; accessed 19-July-2011].
  • 8. $17^th$ edition, American Public Health Association, Washington, D. C., 2002.
  • 9. (2004). Available from: http://math.lanl.gov/~mac/dsdisp/ [Online; accessed 19-January-2012].
  • 10. Emerging Infectious Diseases, 10 (2004), 1-8.
  • 11. Mathematical Biosciences, 195 (2005), 228-251.
  • 12. Social Networks, 29 (2007), 539-554.
  • 13. American Journal of Epidemiology, 158 (2003), 717-723.
  • 14. American Journal of Epidemiology, 158 (2003), 110-117.
  • 15. Nature, 429 (2004), 180-184.
  • 16. Social Networks, 5 (1983), 1-11.
  • 17. PNAS, 108 (2011), 6306-6311.
  • 18. World Health Organization Geneva, Switzerland, (1988).
  • 19. Nature, 425 (2003), 681-685.
  • 20. Nature, 414 (2001), 748-751.
  • 21. Mathematical Biosciences, 235 (2012), 1-7.
  • 22. Mathematical Biosciences, 128 (1995), 41-55.
  • 23. Science, 298 (2002), 1428-1430.
  • 24. Mathematical Biosciences, 84 (1987), 85-118.
  • 25. Lecture Notes in Biomathematics, 56, Springer-Verlag, New York, 1984.
  • 26. in "World Congress of Nonlinear Analysts '92: Proceedings of the First World Congress of Nonlinear Analysts" (ed. V. Lakshmikantham), Walter de Gruyter & Co., (1995), 3137-3148.
  • 27. Applied Numerical Mathematics, 24 (1997), 379-392.
  • 28. SIAM Journal on Applied Mathematics, 57 (1997), 1082-1094.
  • 29. Mathematical Biosciences, 155 (1999), 77-109.
  • 30. Mathematical Biosciences, 90 (1988), 415-473.
  • 31. in "Mathematical Approaches to Problems in Resource Management and Epidemiology" (eds. C. Castillo-Chavez, S. A. Levin and C. A. Shoemaker), Lecture Notes in Biomathematics, 81, Springer, Berlin, (1989), 190-219.
  • 32. University of Chicago Press, 1983.
  • 33. Journal of Laboratory and Clinical Medicine, 142 (2003), 221-228.
  • 34. Mathematical Biosciences, 92 (1988), 119-199.
  • 35. in "Mathematical and Statistical Approaches to AIDS Epidemiology" (ed. C. Castillo-Chavez), Lecture Notes in Biomath., 83, Springer, New York, (1989), 218-239.
  • 36. Proceedings of the National Academy of Sciences, 99 (2002), 10935-10940.
  • 37. Journal of Mathematical Biology, 48 (2004), 423-443.
  • 38. in "Mathematical and Statistical Approaches to AIDS Epidemiology" (ed. C. Castillo-Chavez), Lecture Notes in Biomathematics, 83, Springer, Berlin, (1989), 316-348.
  • 39. Mathematical Biosciences, 133 (1996), 165-195.
  • 40. in "Modeling the AIDS Epidemic: Planning, Policy, and Prediction" (eds. E.H. Kaplan and M.L. Brandeau), Raven Press, New York, (1994), 561-583.
  • 41. EID, 10 (2004), 832-841.
  • 42. The Journal of Infectious Diseases, 125 (1972), 161-169.
  • 43. PLoS Pathogens, 6 (2010), e1000745.
  • 44. Emerging Infectious Diseases, 7 (2001), 959-969.
  • 45. Journal of Epidemiology, 14 (2004), 41-50.
  • 46. Mathematical Biosciences, 52 (1980), 227-240.
  • 47. Emerging Infectious Diseases, 10 (2004), 587-592.
  • 48. JAMA, 290 (2003), 3215-3221.
  • 49. Indian Journal of Medical Research, 56 (1968), 1826-1854.
  • 50. in "The Small World" (ed. M. Kochen), Ablex, Norwood, NJ, (1989), 327-348.
  • 51. World Health Organization, Geneva, (1969).
  • 52. Mathematical Biosciences, 203 (2006), 301-318.
  • 53. Journal of Artificial Societies and Social Simulation, 10 (2007).
  • 54. Mathematical Biosciences, 180 (2002), 29-48.
  • 55. Journal of Mathematical Biology, 32 (1994), 233-249.
  • 56. Pediatric Infectious Disease Journal, 24 (2005), S58-S61.
  • 57. Health Care Management Science, 5 (2002), 147-155.

 

This article has been cited by

  • 1. Kasia A. Pawelek, Sarah Tobin, Christopher Griffin, Dominik Ochocinski, Elissa J. Schwartz, Sara Del Valle, Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza, AIMS Medical Science, 2017, 4, 2, 217, 10.3934/medsci.2017.2.217
  • 2. C. Raina MacIntyre, Valentina Costantino, Xin Chen, Eva Segelov, Abrar Ahmad Chughtai, Anthony Kelleher, Mohana Kunasekaran, John Michael Lane, Influence of Population Immunosuppression and Past Vaccination on Smallpox Reemergence, Emerging Infectious Diseases, 2018, 24, 4, 646, 10.3201/eid2404.171233
  • 3. Asma Azizi, Ling Xue, James M. Hyman, , Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, 2016, Chapter 15, 249, 10.1007/978-3-319-40413-4_15
  • 4. Gabriel Andreguetto Maciel, Renato Mendes Coutinho, Roberto André Kraenkel, Critical patch-size for two-sex populations, Mathematical Biosciences, 2018, 300, 138, 10.1016/j.mbs.2018.03.028
  • 5. Qiuyan Liao, Benjamin J. Cowling, Peng Wu, Gabriel M. Leung, Richard Fielding, Wendy Wing Tak Lam, Population Behavior Patterns in Response to the Risk of Influenza A(H7N9) in Hong Kong, December 2013–February 2014, International Journal of Behavioral Medicine, 2015, 22, 5, 672, 10.1007/s12529-015-9465-3
  • 6. Valentina Costantino, Mohana P Kunasekaran, Abrar A Chughtai, Chandini R MacIntyre, How Valid Are Assumptions About Re-emerging Smallpox? A Systematic Review of Parameters Used in Smallpox Mathematical Models, Military Medicine, 2018, 183, 7-8, e200, 10.1093/milmed/usx092
  • 7. Frederik Verelst, Lander Willem, Philippe Beutels, Behavioural change models for infectious disease transmission: a systematic review (2010–2015), Journal of The Royal Society Interface, 2016, 13, 125, 20160820, 10.1098/rsif.2016.0820
  • 8. Stephanie Brinkhues, Miranda T. Schram, Christian J. P. A. Hoebe, Mirjam E. E. Kretzschmar, Annemarie Koster, Pieter C. Dagnelie, Simone J. S. Sep, Sander M. J. van Kuijk, Paul H. M. Savelkoul, Nicole H. T. M. Dukers-Muijrers, Social networks in relation to self-reported symptomatic infections in individuals aged 40–75 - the Maastricht study –, BMC Infectious Diseases, 2018, 18, 1, 10.1186/s12879-018-3197-3
  • 9. Ahmed Salem ElArbi, Yaghouba Kane, Raphaelle Metras, Pachka Hammami, Mamadou Ciss, Assane Beye, Renaud Lancelot, Adama Diallo, Andrea Apolloni, PPR Control in a Sahelian Setting: What Vaccination Strategy for Mauritania?, Frontiers in Veterinary Science, 2019, 6, 10.3389/fvets.2019.00242
  • 10. Junyuan Yang, Chairat Modnak, Jin Wang, Dynamical analysis and optimal control simulation for an age-structured cholera transmission model, Journal of the Franklin Institute, 2019, 10.1016/j.jfranklin.2019.08.016
  • 11. Wiriya Mahikul, Somkid Kripattanapong, Piya Hanvoravongchai, Aronrag Meeyai, Sopon Iamsirithaworn, Prasert Auewarakul, Wirichada Pan-ngum, Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand, International Journal of Environmental Research and Public Health, 2020, 17, 7, 2237, 10.3390/ijerph17072237
  • 12. Kai Wang, Bryan Wilder, Sze-chuan Suen, Bistra Dilkina, Milind Tambe, , Machine Learning and Knowledge Discovery in Databases, 2020, Chapter 44, 555, 10.1007/978-3-030-43823-4_44
  • 13. Hiromi Seno, An SIS model for the epidemic dynamics with two phases of the human day-to-day activity, Journal of Mathematical Biology, 2020, 10.1007/s00285-020-01491-0

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, Sara Y. Del Valle, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved