Loading [Contrib]/a11y/accessibility-menu.js

The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 92D30, 92C60; Secondary: 37N25.

  • We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number $R_0$ during the initial epidemic phase, prior to the start of control interventions. We estimated $R_0$ at $27.2$ ($95 \%$CI: $14.8$, $49.3$). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.

    Citation: Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455

    Related Papers:

    [1] Pedro José Gutiérrez-Diez, Jose Russo . Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2020, 17(5): 4773-4800. doi: 10.3934/mbe.2020261
    [2] R. A. Everett, Y. Zhao, K. B. Flores, Yang Kuang . Data and implication based comparison of two chronic myeloid leukemia models. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1501-1518. doi: 10.3934/mbe.2013.10.1501
    [3] Cristian Tomasetti, Doron Levy . An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905
    [4] Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864
    [5] Dana Paquin, Lizzy Gross, Avery Stewart, Giovani Thai . Numerical analysis of critical parameter values for remission during imatinib treatment of chronic myelogenous leukemia. Mathematical Biosciences and Engineering, 2025, 22(6): 1551-1571. doi: 10.3934/mbe.2025057
    [6] Kangbo Bao . An elementary mathematical modeling of drug resistance in cancer. Mathematical Biosciences and Engineering, 2021, 18(1): 339-353. doi: 10.3934/mbe.2021018
    [7] Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389
    [8] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [9] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
    [10] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
  • We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number $R_0$ during the initial epidemic phase, prior to the start of control interventions. We estimated $R_0$ at $27.2$ ($95 \%$CI: $14.8$, $49.3$). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.


    [1] El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37-38.
    [2] Oxford University Press, Oxford, UK, 1991.
    [3] Springer-Verlag, New York, 2000.
    [4] BMC Infectious Diseases, 11 (2011), 164.
    [5] Mathematical Biosciences, 208 (2007), 571-589.
    [6] Epidemiology and Infection, 8 (2008), 1-11.
    [7] Journal of Environmental Health, 68 (2006), 40-44.
    [8] Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.
    [9] Available from: http://www.meteochile.cl/.
    [10] Tropical Medicine and International Health, 11 (2006), 332-340.
    [11] Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757-768.
    [12] American Journal of Tropical Medicine and Hygiene, 53 (1995), 489-506.
    [13] Clinical Microbiology Reviews, 11 (1998), 480-496.
    [14] Mathematical Biosciences, 209 (2007), 361-385.
    [15] Annu Rev Entomol., 53 (2007), 273-291.
    [16] Trop. Med. Int. Health., 14 (2009), 628-638.
    [17] American Journal of Tropical Medicine and Hygiene, 80 (2009), 66-71.
    [18] Mathematical Biosciences, 155 (1999), 77-109.
    [19] Available from: http://www.ine.cl.
    [20] Michigan Thompson-Shore, Inc., Michigan, 1996.
    [21] American Journal Tropical Medicine and Hygiene, 57 (1997), 285-297.
    [22] American Journal of Epidemiology, 133 (1991), 1168-1178.
    [23] Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560-568.
    [24] Memórias do Instituto Oswaldo Cruz, 98 (2003), 871-878.
    [25] Chapter Epidemics, Oxford University Press, London, (1957), 45-62.
    [26] Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58-59.
    [27] Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370-374.
    [28] American Journal Tropical Medicine and Hygiene, 70 (2004), 346-350.
    [29] American Journal of Tropical Medicine and Hygiene, 58 (1998), 277-282.
    [30] Bulletin of Mathematical Biology, 68 (2006), 1945-1974.
    [31] Emerg Infect Dis., 9 (2003), 1465-1467.
    [32] John Murray, London, 1910.
    [33] Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369-375.
    [34] PLoS Biology, 2 (2004), 1957-1964.
    [35] PLoS Negl. Trop. Dis., 3 (2009), e481.
    [36] Mathematical Biosciences, 180 (2002), 29-48.
    [37] Journal of Infectious Diseases, 181 (2000), 2-9.
    [38] PLoS Medicine, 2 (2005), e174.
    [39] Available from: http://www.who.int/mediacentre/factsheets/fs117/en/.
    [40] Available from: http://www.who.int/csr/resources/publications/dengue/012-23.pdf.
  • This article has been cited by:

    1. Benjamin Werner, David Lutz, Tim H. Brümmendorf, Arne Traulsen, Stefan Balabanov, Mikhail V. Blagosklonny, Dynamics of Resistance Development to Imatinib under Increasing Selection Pressure: A Combination of Mathematical Models and In Vitro Data, 2011, 6, 1932-6203, e28955, 10.1371/journal.pone.0028955
    2. Mst. Shanta Khatun, Md. Haider Ali Biswas, Mathematical analysis and optimal control applied to the treatment of leukemia, 2020, 64, 1598-5865, 331, 10.1007/s12190-020-01357-0
    3. Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345
    4. Helen Moore, How to mathematically optimize drug regimens using optimal control, 2018, 45, 1567-567X, 127, 10.1007/s10928-018-9568-y
    5. Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11
    6. Antonio Fasano, Adélia Sequeira, 2017, Chapter 8, 978-3-319-60512-8, 295, 10.1007/978-3-319-60513-5_8
    7. Mst. Shanta Khatun, Md. Haider Ali Biswas, Modeling the effect of adoptive T cell therapy for the treatment of leukemia, 2020, 2, 2577-7408, 10.1002/cmm4.1069
    8. Helen Moore, Lewis Strauss, Urszula Ledzewicz, Optimization of combination therapy for chronic myeloid leukemia with dosing constraints, 2018, 77, 0303-6812, 1533, 10.1007/s00285-018-1262-6
    9. Lorand Gabriel Parajdi, Radu Precup, Eduard Alexandru Bonci, Ciprian Tomuleasa, A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia, 2020, 8, 2227-7390, 376, 10.3390/math8030376
    10. Amin Noori, Alireza Alfi, Ghazaleh Noori, An intelligent control strategy for cancer cells reduction in patients with chronic myelogenous leukaemia using the reinforcement learning and considering side effects of the drug, 2020, 0266-4720, 10.1111/exsy.12655
    11. S. Chulián, Á. Martínez-Rubio, M. Rosa, V. M. Pérez-García, Mathematical models of leukaemia and its treatment: a review, 2022, 79, 2254-3902, 441, 10.1007/s40324-022-00296-z
    12. H. Jonathan G. Lindström, Ran Friedman, Rotating between ponatinib and imatinib temporarily increases the efficacy of imatinib as shown in a chronic myeloid leukaemia model, 2022, 12, 2045-2322, 10.1038/s41598-022-09048-5
    13. Henry Fenekansi Kiwumulo, Haruna Muwonge, Charles Ibingira, John Baptist Kirabira, Robert Tamale. Ssekitoleko, A systematic review of modeling and simulation approaches in designing targeted treatment technologies for Leukemia Cancer in low and middle income countries, 2021, 18, 1551-0018, 8149, 10.3934/mbe.2021404
    14. Lorand Gabriel Parajdi, Xue Bai, Dávid Kegyes, Ciprian Tomuleasa, A mathematical model of clonal hematopoiesis explaining phase transitions in chronic myeloid leukemia, 2025, 1477-8599, 10.1093/imammb/dqaf004
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3232) PDF downloads(523) Cited by(18)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog