Citation: J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017
[1] | J. M. Cushing . Discrete time darwinian dynamics and semelparity versus iteroparity. Mathematical Biosciences and Engineering, 2019, 16(4): 1815-1835. doi: 10.3934/mbe.2019088 |
[2] | Anthony Tongen, María Zubillaga, Jorge E. Rabinovich . A two-sex matrix population model to represent harem structure. Mathematical Biosciences and Engineering, 2016, 13(5): 1077-1092. doi: 10.3934/mbe.2016031 |
[3] | Jim M. Cushing . A Darwinian version of the Leslie logistic model for age-structured populations. Mathematical Biosciences and Engineering, 2025, 22(6): 1263-1279. doi: 10.3934/mbe.2025047 |
[4] | Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643 |
[5] | Azmy S. Ackleh, Keng Deng . Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences and Engineering, 2010, 7(4): 729-737. doi: 10.3934/mbe.2010.7.729 |
[6] | Wei Feng, Michael T. Cowen, Xin Lu . Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences and Engineering, 2014, 11(4): 823-839. doi: 10.3934/mbe.2014.11.823 |
[7] | John Cleveland . Basic stage structure measure valued evolutionary game model. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291 |
[8] | Abhyudai Singh, Roger M. Nisbet . Variation in risk in single-species discrete-time models. Mathematical Biosciences and Engineering, 2008, 5(4): 859-875. doi: 10.3934/mbe.2008.5.859 |
[9] | Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306 |
[10] | Edoardo Beretta, Dimitri Breda . Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences and Engineering, 2016, 13(1): 19-41. doi: 10.3934/mbe.2016.13.19 |
[1] | (Coleoptera: Bruchidae), Journal of Animal Ecology 51 (1982), 263-287. |
[2] | Bulletin of Mathematical Biology, 51 (1989), 687-713. |
[3] | Natural Resource Modeling, 8 (1994), 1-37. |
[4] | Journal of Difference Equations and Applications, 9 (2003), 655-670. |
[5] | Mathematical Biosciences and Engineering, 3 (2006), 17-36. |
[6] | Journal of Mathematical Biology, 59 (2009), 75-104. |
[7] | Journal of Biological Dynamics, 5 (2011), 277-297. |
[8] | Journal of Difference Equations and Applications, 18 (2012), 1-26. |
[9] | Journal of Biological Dynamics, 6 (2012), 80-102. |
[10] | Journal of Mathematical Biology, 46 (2003), 95-131. |
[11] | Ph.D Dissertation, University of Utrecht, The Netherlands, 2004. |
[12] | Linear Algebra and its Applications, 398 (2005), 185-243. |
[13] | Journal of Difference Equations and Applications, 11 (2005), 327-335. |
[14] | Journal of Theoretical Biology, 124 (1987), 25-33. |
[15] | Journal of Theoretical Biology, 131 (1988), 389-400. |
[16] | Journal of Mathematical Biology, 4 (1977), 101-147. |
[17] | Journal of Animal Ecology. 45 (1976), 471-486. |
[18] | Applied Mathematical Sciences 156, Springer, New York, 2004. |
[19] | SIAM Journal of Applied Mathematics, 66 (2005), 616-626. |
[20] | Journal of Mathematical Biology. 55 (2007), 781-802. |
[21] | in "Mathematical Modeling of Biological Systems, Volume II" (eds A. Deutsch, R. Bravo de la Parra, R. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky and H. Metz), Birkhäuser, Boston, (2008), 79-90. |
[22] | Journal of Biological Dynamics, 6 (2012), 855-890. |
[23] | Biometrika, 45 (1958), 316-330. |
[24] | Acta Mathematicae Applicatae Sinica, 11 (1995), 160-171. |
[25] | Journal of Theoretical Biology, 144 (1990), 567-571. |
[26] | Journal of Animal Ecology, 43 (1974), 747-770. |
[27] | Journal of Theoretical Biology, 49 (1975), 645-647. |
[28] | Journal of Mathematical Biology, 32 (1994), 329-344. |
[29] | Chapman and Hall, New York, 1992. |
[30] | Theoretical Population Biology, 21 (1982), 255-268. |
[31] | Cambridge University Press, New York, 2005. |
[32] | Journal of Mathematical Biology, 35 (1996), 195-239. |
[33] | Mathematical Biosciences, 146 (1997), 37-62. |
1. | Jim M. Cushing, 2016, Chapter 3, 978-81-322-3638-2, 41, 10.1007/978-81-322-3640-5_3 | |
2. | Luigi Aldieri, Maxim N. Kotsemir, Concetto Paolo Vinci, The Effects of Collaboration on Research Performance of Universities: an Analysis by Federal District and Scientific Fields in Russia, 2020, 11, 1868-7865, 766, 10.1007/s13132-018-0570-9 | |
3. | J. M. CUSHING, SHANDELLE M. HENSON, JAMES L. HAYWARD, AN EVOLUTIONARY GAME-THEORETIC MODEL OF CANNIBALISM, 2015, 28, 08908575, 497, 10.1111/nrm.12079 | |
4. | Amy Veprauskas, J. M. Cushing, Evolutionary dynamics of a multi-trait semelparous model, 2015, 21, 1531-3492, 655, 10.3934/dcdsb.2016.21.655 | |
5. | Patrick William Hughes, Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity, 2017, 7, 20457758, 8232, 10.1002/ece3.3341 | |
6. | J. M. Cushing, 2015, Chapter 12, 978-3-319-16117-4, 215, 10.1007/978-3-319-16118-1_12 | |
7. | J. M. Cushing, Alex P. Farrell, A bifurcation theorem for nonlinear matrix models of population dynamics, 2020, 26, 1023-6198, 25, 10.1080/10236198.2019.1699916 | |
8. | Maria Kleshnina, Sabrina Streipert, Joel S. Brown, Kateřina Staňková, Game Theory for Managing Evolving Systems: Challenges and Opportunities of Including Vector-Valued Strategies and Life-History Traits, 2023, 2153-0785, 10.1007/s13235-023-00544-5 |