1.
|
Dave Osthus, Kyle S. Hickmann, Petruţa C. Caragea, Dave Higdon, Sara Y. Del Valle,
Forecasting seasonal influenza with a state-space SIR model,
2017,
11,
1932-6157,
10.1214/16-AOAS1000
|
|
2.
|
Brett Matzuka, Jesper Mehlsen, Hien Tran, Mette Sofie Olufsen,
Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt,
2015,
62,
0018-9294,
1992,
10.1109/TBME.2015.2409211
|
|
3.
|
Hailay Weldegiorgis Berhe, Oluwole Daniel Makinde, David Mwangi Theuri,
Parameter Estimation and Sensitivity Analysis of Dysentery Diarrhea Epidemic Model,
2019,
2019,
1110-757X,
1,
10.1155/2019/8465747
|
|
4.
|
Tulio Rodrigues, Otaviano Helene,
Monte Carlo approach to model COVID-19 deaths and infections using Gompertz functions,
2020,
2,
2643-1564,
10.1103/PhysRevResearch.2.043381
|
|
5.
|
Necibe Tuncer, Hayriye Gulbudak, Vincent L. Cannataro, Maia Martcheva,
Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector–Host Models with Application to Rift Valley Fever,
2016,
78,
0092-8240,
1796,
10.1007/s11538-016-0200-2
|
|
6.
|
Dave Osthus, James Gattiker, Reid Priedhorsky, Sara Y. Del Valle,
Dynamic Bayesian Influenza Forecasting in the United States with Hierarchical Discrepancy (with Discussion),
2019,
14,
1936-0975,
10.1214/18-BA1117
|
|
7.
|
Gerardo Chowell,
Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts,
2017,
2,
24680427,
379,
10.1016/j.idm.2017.08.001
|
|
8.
|
Chiara Piazzola, Lorenzo Tamellini, Raúl Tempone,
A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology,
2021,
332,
00255564,
108514,
10.1016/j.mbs.2020.108514
|
|
9.
|
Ming Liu, Xifen Xu, Jie Cao, Ding Zhang,
Integrated planning for public health emergencies: A modified model for controlling H1N1 pandemic,
2020,
71,
0160-5682,
748,
10.1080/01605682.2019.1582589
|
|
10.
|
Ping Yan, Gerardo Chowell,
2019,
Chapter 9,
978-3-030-21922-2,
317,
10.1007/978-3-030-21923-9_9
|
|
11.
|
Abdallah Alsayed, Hayder Sadir, Raja Kamil, Hasan Sari,
Prediction of Epidemic Peak and Infected Cases for COVID-19 Disease in Malaysia, 2020,
2020,
17,
1660-4601,
4076,
10.3390/ijerph17114076
|
|
12.
|
Necibe Tuncer, Trang T. Le,
Structural and practical identifiability analysis of outbreak models,
2018,
299,
00255564,
1,
10.1016/j.mbs.2018.02.004
|
|
13.
|
João N. C. Gonçalves, Helena Sofia Rodrigues, M. Teresa T. Monteiro,
2017,
Chapter 96,
978-3-319-53479-4,
974,
10.1007/978-3-319-53480-0_96
|
|
14.
|
Andreas Widder,
On the usefulness of set-membership estimation in the epidemiology of infectious diseases,
2017,
15,
1551-0018,
141,
10.3934/mbe.2018006
|
|
15.
|
Ming Liu, Jie Cao, Jing Liang, MingJun Chen,
2020,
Chapter 9,
978-981-13-9352-5,
167,
10.1007/978-981-13-9353-2_9
|
|
16.
|
Punam R Thakare, S S Mathurkar,
2016,
Modeling of epidemic spread by social interactions,
978-1-5090-0774-5,
1320,
10.1109/RTEICT.2016.7808045
|
|
17.
|
Mazair Raissi, Niloofar Ramezani, Padmanabhan Seshaiyer,
On Parameter Estimation Approaches for Predicting Disease Transmission Through Optimization, Deep Learning and Statistical Inference Methods,
2019,
6,
23737867,
10.30707/LiB6.2Raissi
|
|
18.
|
Toshikazu Kuniya,
Evaluation of the effect of the state of emergency for the first wave of COVID-19 in Japan,
2020,
5,
24680427,
580,
10.1016/j.idm.2020.08.004
|
|
19.
|
George Qian, Adam Mahdi,
Sensitivity analysis methods in the biomedical sciences,
2020,
323,
00255564,
108306,
10.1016/j.mbs.2020.108306
|
|
20.
|
Yuxuan He, Nan Liu,
Methodology of emergency medical logistics for public health emergencies,
2015,
79,
13665545,
178,
10.1016/j.tre.2015.04.007
|
|
21.
|
Siddhartha Paul, Jayendran Venkateswaran,
Impact of drug supply chain on the dynamics of infectious diseases,
2017,
33,
0883-7066,
280,
10.1002/sdr.1592
|
|
22.
|
Toshikazu Kuniya,
Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020,
2020,
9,
2077-0383,
789,
10.3390/jcm9030789
|
|
23.
|
Tianjian Zhou, Yuan Ji,
Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model,
2020,
97,
15517144,
106146,
10.1016/j.cct.2020.106146
|
|
24.
|
T. Butler, L. Graham, S. Mattis, S. Walsh,
A Measure-Theoretic Interpretation of Sample Based Numerical Integration with Applications to Inverse and Prediction Problems under Uncertainty,
2017,
39,
1064-8275,
A2072,
10.1137/16M1063289
|
|
25.
|
Mattia Zanella, Chiara Bardelli, Mara Azzi, Silvia Deandrea, Pietro Perotti, Santino Silva, Ennio Cadum, Silvia Figini, Giuseppe Toscani,
Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection,
2021,
18,
1551-0018,
3384,
10.3934/mbe.2021169
|
|
26.
|
Mattia Zanella, Chiara Bardelli, Giacomo Dimarco, Silvia Deandrea, Pietro Perotti, Mara Azzi, Silvia Figini, Giuseppe Toscani,
A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian province,
2021,
31,
0218-2025,
2533,
10.1142/S021820252150055X
|
|
27.
|
Giacomo Albi, Giulia Bertaglia, Walter Boscheri, Giacomo Dimarco, Lorenzo Pareschi, Giuseppe Toscani, Mattia Zanella,
2022,
Chapter 3,
978-3-030-96561-7,
43,
10.1007/978-3-030-96562-4_3
|
|
28.
|
Bin Hu, Guanhua Jiang, Xinyi Yao, Wei Chen, Tingyu Yue, Qitong Zhao, Zongliang Wen,
Allocation of emergency medical resources for epidemic diseases considering the heterogeneity of epidemic areas,
2023,
11,
2296-2565,
10.3389/fpubh.2023.992197
|
|
29.
|
Yan Wang, Guichen Lu, Jiang Du,
Calibration and prediction for the inexact SIR model,
2022,
19,
1551-0018,
2800,
10.3934/mbe.2022128
|
|
30.
|
Leah Mitchell, Andrea Arnold,
Analyzing the effects of observation function selection in ensemble Kalman filtering for epidemic models,
2021,
339,
00255564,
108655,
10.1016/j.mbs.2021.108655
|
|
31.
|
Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng,
Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis,
2022,
6,
2504-3110,
197,
10.3390/fractalfract6040197
|
|
32.
|
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella,
Modelling lockdown measures in epidemic outbreaks using selective socio-economic containment with uncertainty,
2021,
18,
1551-0018,
7161,
10.3934/mbe.2021355
|
|
33.
|
Collins Okoyo, Nelson Onyango, Idah Orowe, Charles Mwandawiro, Graham Medley,
Sensitivity Analysis of a Transmission Interruption Model for the Soil-Transmitted Helminth Infections in Kenya,
2022,
10,
2296-2565,
10.3389/fpubh.2022.841883
|
|
34.
|
Hannah C. Lepper, Mark E. J. Woolhouse, Bram A. D. van Bunnik,
The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study,
2022,
11,
2079-6382,
1361,
10.3390/antibiotics11101361
|
|
35.
|
Emmanuelle A. Dankwa, Andrew F. Brouwer, Christl A. Donnelly,
Structural identifiability of compartmental models for infectious disease transmission is influenced by data type,
2022,
41,
17554365,
100643,
10.1016/j.epidem.2022.100643
|
|
36.
|
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella,
Control with uncertain data of socially structured compartmental epidemic models,
2021,
82,
0303-6812,
10.1007/s00285-021-01617-y
|
|
37.
|
Faraja Luhanda, Jacob I. Irunde, Dmitry Kuznetsov,
Modeling cryptosporidiosis in humans and cattle: Deterministic and stochastic approaches,
2023,
21,
24056731,
e00293,
10.1016/j.parepi.2023.e00293
|
|
38.
|
Divine Wanduku,
The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models,
2022,
8,
24058440,
e12622,
10.1016/j.heliyon.2022.e12622
|
|
39.
|
G. Dimarco, B. Perthame, G. Toscani, M. Zanella,
Kinetic models for epidemic dynamics with social heterogeneity,
2021,
83,
0303-6812,
10.1007/s00285-021-01630-1
|
|
40.
|
Linjie Wen, Jinglai Li,
Affine-mapping based variational ensemble Kalman filter,
2022,
32,
0960-3174,
10.1007/s11222-022-10156-5
|
|
41.
|
Miriam R. Ferrández, Benjamin Ivorra, Juana L. Redondo, Ángel M. Ramos, Pilar M. Ortigosa,
A multi-objective approach to identify parameters of compartmental epidemiological models—Application to Ebola Virus Disease epidemics,
2023,
120,
10075704,
107165,
10.1016/j.cnsns.2023.107165
|
|
42.
|
G. Dimarco, G. Toscani, M. Zanella,
Optimal control of epidemic spreading in the presence of social heterogeneity,
2022,
380,
1364-503X,
10.1098/rsta.2021.0160
|
|
43.
|
Albert Orwa Akuno, L. Leticia Ramírez-Ramírez, Jesús F. Espinoza,
Inference on a Multi-Patch Epidemic Model with Partial Mobility, Residency, and Demography: Case of the 2020 COVID-19 Outbreak in Hermosillo, Mexico,
2023,
25,
1099-4300,
968,
10.3390/e25070968
|
|
44.
|
Yuqing Sun, Zhonghua Zhang, Yulin Sun,
Calculation Method and Application of Time-Varying Transmission Rate via Data-Driven Approach,
2023,
11,
2227-7390,
2955,
10.3390/math11132955
|
|
45.
|
Alvan Caleb Arulandu, Padmanabhan Seshaiyer,
PHYSICS-INFORMED NEURAL NETWORKS FOR INFORMED VACCINE DISTRIBUTION INMETA-POPULATIONS
,
2023,
4,
2689-3967,
83,
10.1615/JMachLearnModelComput.2023047642
|
|
46.
|
Jacques Hermes, Marcus Rosenblatt, Christian Tönsing, Jens Timmer,
2023,
2872,
0094-243X,
030006,
10.1063/5.0163819
|
|
47.
|
Shan Qiao, Mingke He, Jing Wang, Jianping Cai, Jie Zheng,
Robust optimization for a dynamic emergency materials supply chain network under major infectious disease epidemics,
2023,
1367-5567,
1,
10.1080/13675567.2023.2269101
|
|
48.
|
Chih-Li Sung, Ying Hung,
Efficient calibration for imperfect epidemic models with applications to the analysis of COVID-19,
2023,
0035-9254,
10.1093/jrsssc/qlad083
|
|
49.
|
B. K. M. Case, Jean-Gabriel Young, Laurent Hébert-Dufresne,
Accurately summarizing an outbreak using epidemiological models takes time,
2023,
10,
2054-5703,
10.1098/rsos.230634
|
|
50.
|
Jacques Hermes, Marcus Rosenblatt, Christian Tönsing, Jens Timmer,
Non-Parametric Model-Based Estimation of the Effective Reproduction Number for SARS-CoV-2,
2023,
16,
1999-4893,
533,
10.3390/a16120533
|
|
51.
|
D. Bichara, A. Iggidr, M. Oumoun, A. Rapaport, G. Sallet,
Identifiability and Observability via decoupled variables: Application to a malaria intra-host model,
2023,
56,
24058963,
576,
10.1016/j.ifacol.2023.10.1629
|
|
52.
|
Martina Cendoya, Ana Navarro-Quiles, Antonio López-Quílez, Antonio Vicent, David Conesa,
An Individual-Based Spatial Epidemiological Model for the Spread of Plant Diseases,
2024,
1085-7117,
10.1007/s13253-024-00604-2
|
|
53.
|
Praachi Das, Morganne Igoe, Alexanderia Lacy, Trevor Farthing, Archana Timsina, Cristina Lanzas, Suzanne Lenhart, Agricola Odoi, Alun L. Lloyd,
Modeling county level COVID-19 transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when fitting mechanistic models to time-varying processes,
2024,
00255564,
109181,
10.1016/j.mbs.2024.109181
|
|
54.
|
Nik Cunniffe, Frédéric Hamelin, Abderrahman Iggidr, Alain Rapaport, Gauthier Sallet,
2024,
Chapter 5,
978-981-97-2538-0,
59,
10.1007/978-981-97-2539-7_5
|
|
55.
|
Hannah Kravitz, Christina Durón, Moysey Brio,
A Coupled Spatial-Network Model: A Mathematical Framework for Applications in Epidemiology,
2024,
86,
0092-8240,
10.1007/s11538-024-01364-3
|
|
56.
|
Mahmudul Bari Hridoy,
An exploration of modeling approaches for capturing seasonal transmission in stochastic epidemic models,
2025,
22,
1551-0018,
324,
10.3934/mbe.2025013
|
|