Multistability, oscillations and bifurcations in feedback loops

  • Received: 01 May 2009 Accepted: 29 June 2018 Published: 01 January 2010
  • MSC : Primary: 37N25, 37G10; Secondary: 34C23, 34A34.

  • Feedback loops are found to be important network structures in regulatory networks of biological signaling systems because they are responsible for maintaining normal cellular activity. Recently, the functions of feedback loops have received extensive attention. The existing results in the literature mainly focus on verifying that negative feedback loops are responsible for oscillations, positive feedback loops for multistability, and coupled feedback loops for the combined dynamics observed in their individual loops. In this work, we develop a general framework for studying systematically functions of feedback loops networks. We investigate the general dynamics of all networks with one to three nodes and one to two feedback loops. Interestingly, our results are consistent with Thomas' conjectures although we assume each node in the network undergoes a decay, which corresponds to a negative loop in Thomas' setting. Besides studying how network structures influence dynamics at the linear level, we explore the possibility of network structures having impact on the nonlinear dynamical behavior by using Lyapunov-Schmidt reduction and singularity theory.

    Citation: Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 83-97. doi: 10.3934/mbe.2010.7.83

    Related Papers:

  • Feedback loops are found to be important network structures in regulatory networks of biological signaling systems because they are responsible for maintaining normal cellular activity. Recently, the functions of feedback loops have received extensive attention. The existing results in the literature mainly focus on verifying that negative feedback loops are responsible for oscillations, positive feedback loops for multistability, and coupled feedback loops for the combined dynamics observed in their individual loops. In this work, we develop a general framework for studying systematically functions of feedback loops networks. We investigate the general dynamics of all networks with one to three nodes and one to two feedback loops. Interestingly, our results are consistent with Thomas' conjectures although we assume each node in the network undergoes a decay, which corresponds to a negative loop in Thomas' setting. Besides studying how network structures influence dynamics at the linear level, we explore the possibility of network structures having impact on the nonlinear dynamical behavior by using Lyapunov-Schmidt reduction and singularity theory.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(109) PDF downloads(577) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog