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Abstract. Feedback loops are found to be important network structures in
regulatory networks of biological signaling systems because they are responsi-
ble for maintaining normal cellular activity. Recently, the functions of feedback
loops have received extensive attention. The existing results in the literature
mainly focus on verifying that negative feedback loops are responsible for oscil-
lations, positive feedback loops for multistability, and coupled feedback loops
for the combined dynamics observed in their individual loops. In this work,
we develop a general framework for studying systematically functions of feed-
back loops networks. We investigate the general dynamics of all networks with
one to three nodes and one to two feedback loops. Interestingly, our results
are consistent with Thomas’ conjectures although we assume each node in the
network undergoes a decay, which corresponds to a negative loop in Thomas’
setting. Besides studying how network structures influence dynamics at the
linear level, we explore the possibility of network structures having impact on
the nonlinear dynamical behavior by using Lyapunov-Schmidt reduction and
singularity theory.

1. Introduction. Recently, the role of feedback loop networks has received exten-
sive attention [2, 7, 8, 24, 27, 30] and it has become accepted that the concept of
feedback may be useful as a framework for understanding how intracellular signaling
systems elicit specific cell behavior [6]. A feedback loop is a cycle in a directed graph
whose edges can represent either positive or negative inputs. In a biological net-
work, the nodes can represent concentrations of proteins or genes. In this context,
a positive (resp. negative) edge indicates that an increasing of the concentration
of the tail node will lead to an increasing (resp. decreasing) of the production rate
of the head node. A positive feedback loop consists of an even number of negative
inputs while a negative feedback loop consists of an odd number of negative inputs.
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Feedback loop motifs are important to maintain normal biological activities
[3, 9, 10, 19, 26]. For instance, it has been shown that circadian rhythm, which is as-
sociated with many organisms’ daily activities such as sleep-wake cycle, is generated
by loops of genes that communicate through positive and negative feedback [10, 26].
Feedback loops also play significant roles in developmental networks that govern the
fates of cells during the transition of an egg into a multi-cellular organism [9]. For
example, a two-node positive feedback loop usually has bi-stability which allows
cells to make irreversible decision. Positive feedback loops are widely viewed to
be responsible for multistability. It was actually conjectured by Thomas [31] and
proved by Soulé [28] that the presence of positive feedback loop is a necessary con-
dition for multistibility. Negative feedback loops are considered to be responsible
for oscillations [7, 8, 31]. For example, after stresses such as DNA damage, the
concentration of the tumor suppressor p53 exhibits oscillatory ups and downs. This
oscillating behavior is due to the negative feedback loop consisting of p53 and its
negative regulator Mdm2 [19]. In biological networks, feedback loop motifs often
occur as a coupled structure rather than a single isolated form [17, 18]. There-
fore, it is important to understand the dynamics of coupled feedback loops. To our
knowledge, the current existing literature about the role of coupled feedback loops
focuses on verifying that they have the combinatorial dynamics of the individual
loops that constitute the coupled structure. However, coupled systems may have
dynamics that cannot be predicted from their individual components.

In this work, we develop a framework that enables a systematic study of the
functions of feedback loop networks, which we will describe in Section 2. Under this
framework, we consider feedback loops with one to three nodes and one to two loops,
whose architecture is given in Figure 1. We focus on these feedback loop networks
because networks with up to three nodes are small enough to analyze in a theoretical
framework, but large enough to admit complex dynamical behavior as shown in
several works [20]. Since multistability and oscillations are very common and play
important roles in cellular systems [1, 19, 22, 25, 26], we investigate mainly the
existence of these two properties in the networks listed in Figure 1. We find that the
presence of negative feedback loop is essential for the networks in Figure 1 to admit
oscillations even though we model the dynamics of each node in the network by a
decay term. In Thomas [31] setting, this assumption is equivalent to have a negative
feedback loop. Consequently, our result suggest that oscillations in feedback loops
are not determined by negative loops alone: some extra network structure might be
needed to support oscillations.

In general, multistability occurs via saddle-node bifurcation. However, it might
be possible for some networks to exhibit degenerate bifurcations, such as transcrit-
ical and pitchfork type, due to the presence of certain symmetries [11, 20]. For
example, if one type of transcription factors regulates different genes in a similar
way, the associated regulatory network have some local ‘symmetry’. Therefore, we
explore whether or not network architecture of feedback loops forces degenerate
codimension-one steady-state bifurcations to occur. We investigate this possibil-
ity for networks in family No. 5 because they have more symmetry from network
architecture perspective.

The paper is constructed as follows. In Section 2, we introduce the framework for
the study of the dynamical behavior of feedback loop networks listed in Figure 1. In
Section 3, we first study which networks admit multistability and oscillations, then
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we classify codimension-one steady-state bifurcations for the networks of family
No. 5. The main results are discussed in Section 4.

2. Feedback loops and admissible vector fields. There are two types of inputs
in feedback loops: positive (excitatory) and negative (inhibitory) inputs. We use the
conventional way to represent these two types of inputs: ⊣ representing repression,
→ representing activation. We only consider feedback loops and their coupled
networks with one to three nodes and one to two loops. All such possible networks,
up to permutation of cells, have one of the network forms listed in Figure 1. An
exhaustive classification of networks with three nodes and more edges is presented
by Tyson et al. [32]. Interestingly, all of these networks in Figure 1 have been found
in transcriptional regulatory networks [1, 5, 17, 18].
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Figure 1. The possible network forms of one and two feedback
loops with one to three nodes, the arrows beside edges represent
the direction of inputs: the head nodes receive inputs from the tail
nodes and the inputs can be either positive or negative.

A simple mathematical formalism of feedback loops in transcriptional networks
is suggested by Gardner et al. [12], which is employed by Kim et al. [18]. In this for-
malism, positive and negative inputs are modeled by Hill type functions: increasing
Hill functions if the inputs are positive and decreasing Hill functions if the inputs
are negative. The internal dynamics of each node is described by a first-order poly-
nomial, which consists of a linear degradation term and a constant basal synthesis
term. An example of a model constructed by Kim et al. [18] that uses this ideas is
given in (1). The associated network belongs to family No. 2 listed in Figure 1. The
system (1) models the interactions between two biochemical species: X activates
the transcription of the gene of Y and Y represses the transcription of the gene of
X [18].

Ẏ = −KdyY + Kby +
Vx(X/Kxy)

H

1 + (X/Kxy)H

Ẋ = −KdxX + Kbx +
Vy

1 + (Y/Kyx)H
,

(1)

where V∗, H , and K∗ are parameters.
Motivated by the model strategy described above, we define the admissible vector

fields of feedback loops in the context of transcriptional regulatory networks as
follows.

Let R+ = R+ ∪ {0}. The admissible vector fields of a feedback loop satisfy
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1. the state variable of each node is one dimensional.
2. the internal dynamics of each node has the form of −h(x), where h : R+ → R+

and h(x) is a strictly increasing function.
3. each positive input is represented by a strictly monotonically increasing func-

tion with domain and range in R+; each negative input is represented by a
strictly monotonically decreasing function with domain and range in R+.

For example, the admissible vector field of the negative feedback loop belonging
to family No. 2 in Figure 1 has the form

ẋ1 = −h1(x1) + f1(x2)
ẋ2 = −h2(x2) + f2(x1),

where xi ≥ 0, f i(xj) ≥ 0, and hi(xi) ≥ 0. Also, we assume that hi(xi) are strictly
monotonically increasing.

3. Dynamics of the networks. In this section, we first examine networks in
Figure 1 for their capacity of exhibiting multistability and oscillation. Then, we
study possible codimension-one steady-state bifurcations for the family of networks
No. 5.

3.1. Multistability and oscillation. Craciun and his collaborators [4, 23] have
recently developed a graph-theoretic method to determine whether multistability
and oscillation via Hopf bifurcation can occur in biochemical networks. However,
under our specific problem setting, it is much easier to compute directly equilibria
and Hopf bifurcation conditions. Next we illustrate how we determine those con-
ditions using a network in family No. 3. We consider the admissible vector fields
associated to networks No. 3 given by

ẋ1 = −h1(x1) + f1(x3)
ẋ2 = −h2(x2) + f2(x1)
ẋ3 = −h3(x3) + f3(x2),

(2)

In addition, we assume that except for f3 being monotonically decreasing in R+,
all other functions in (2) are monotonically increasing.

By letting the right-hand sides of (2) to be equal to zero, we obtain

x3 = ((h3)−1 ◦ f3)(x2), x1 = ((f2)−1 ◦ h2)(x2), h1(x1) = f1(x3). (3)

Then, substitution of the first two equations in (3) into the last one yields

(h1 ◦ (f2)−1 ◦ h2)(x2) = (f1 ◦ (h3)−1 ◦ f3)(x2).

Note that the composition of two increasing (decreasing) functions is increasing
while the composition of an increasing and a decreasing function is decreasing.
Hence, (h1 ◦ (f2)−1 ◦ h2)(x2) is monotonically increasing and (f1 ◦ (h3)−1 ◦ f3)(x2)
is monotonically decreasing. Since there is at most one intersection point of graphs
of an increasing function and a decreasing function, there is at most one equilibrium

for the negative feedback loop in family No. 3 given in Figure 2.
Next we consider the possibility that Hopf bifurcation exists in system (2). That

is, we check whether or not the associated Jacobian admits a pair of pure imaginary
eigenvalues.
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The Jacobian matrix of (2) is

J =





−h1
1 0 f1

3

f2
1 −h2

2 0
0 f3

2 −h3
3



 ,

where hi
j = ∂hi

∂xj
and f i

j = ∂fi

∂xj
. The associate characteristic equation is

p(λ) = λ3 + a1λ
2 + a2λ + a3 = 0,

with

a1 = h1
1 + h2

2 + h3
3,

a2 = h1
1h

2
2 + h2

2h
3
3 + h1

1h
3
3

a3 = h1
1h

2
2h

3
3 − f1

3f2
1 f3

2 .

Hence, the Hurwitz determinant is given by

H2 = a1a2 − a3 = (h1
1h

2
2 + h1

1h
3
3) + (h2

2 + h3
3)h

2
2h

3
3 + f1

3 f2
1 f3

2 .

By Lienard-Chipart criterion [21], equation (3.1) has a pair of pure imaginary eigen-
values if and only if a2 > 0 and a1a2−a3 = 0. The coefficient a2 > 0 since all hi are
increasing functions and therefore hi

j > 0. Also, except for the last term f1
3 f2

1 f3
2 ,

all other terms in the expression of a1a2 − a3 are positive. Hence, a1a2 − a3 = 0 is
possible only when f1

3 f2
1 f3

2 < 0. Consequently, the feedback loop of networks No. 3
in Figure 1 has to be negative. In Figure 2 we present one network in Family No. 3
that admits Hopf bifurcation.

1

32

Figure 2. A three-node negative feedback loop. This network
exhibits oscillations via Hopf bifurcation.

Using the same technique we can study the capacity of multistability and oscilla-
tions via Hopf bifurcation for all other networks in Figure 1. The details are given
in Appendix A.

Our results are summarized as follows:

1. The networks with at least one positive feedback loop admit multistability
and steady-state bifurcation. Otherwise, the networks have at most one equi-
librium. That is, for networks in Figure 1 the presence of positive feedback
loops is necessary for multistability.

2. The results concerning the capacity of the networks for Hopf bifurcation are
listed in Table 1. One feedback loop with only one or two nodes, that is family
No. 1 and No. 2, can not have Hopf bifurcation. However, negative feedback
loops with three nodes, that is, family No. 3, admit Hopf bifurcation if their
three-node loop is negative. The family No. 4 needs to contain a positive one-
cell loop and a negative two-cell loop to admit Hopf bifurcation. Such network
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architecture has been actually employed as a model in [6]. The networks of
family No. 5 support Hopf bifurcation if one two-node loop is positive and
another is negative. The remaining two families have a common property
that networks with a three-node negative loop support Hopf-bifurcation.

Table 1. The capacity and conditions for admitting Hopf bifur-
cation. The arrows beside the edges represent directions of inputs,
but the inputs can be either positive or negative. The networks
in the third column are representative networks that satisfy the
conditions on the fourth column.

No. Networks Admitting Hopf bifurcation

1 1 None

2
1 2

None

3

1 2

3 1

32

negative feedback loops
admit Hopf bifurcation.

4

1 2 1 2

networks with one-
node loop being posi-
tive and two-node loop
being negative admit
Hopf bifurcation.

5

12 3 3 1 2

networks with one pos-
itive feedback loop and
one negative feedback
loop admit Hopf bifur-
cation.

6

2

3

1 1 2

3

networks with negative
loops or negative three-
node loop and weak
auto-positive feedback
loop admit Hopf bifur-
cation.

7

2

3

1 1 2

3 networks with negative
three-nodes loop admit
Hopf bifurcation.

3.2. Bifurcation analysis. By the discussion in Section 3.1, it follows that a net-
work in Figure 1 admits steady-state bifurcation if it admits multistability. Mul-
tistability often occurs with two stable equilibria separated by an unstable equi-
librium. In general setting, such multistability can be obtained via saddle-node
bifurcation (see for example [23] and references therein).

Degenerate codimension-one bifurcations, such as pitchfork bifurcations, gener-
ically occur only in the presence of some kind of symmetry [14, 16, 20], including
localized symmetry as defined in the theory of coupled cell systems developed by
Stewart et al. [15, 29]. In the context of this paper, a system where localized
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symmetry can be present would be a transcriptional network with one type of tran-
scription factors regulating various genes in a similar way. In this scenario it might
be possible for the transcriptional networks to have degenerate dynamics.

In this section we explore if degenerate codimension-one steady-state bifurca-
tions can occur in networks listed in Figure 1. We investigate such possibility
only for coupled feedback loops in family No. 5. We choose to study this par-
ticular family because those networks have more symmetry, which from our point
of view make them a good candidate for having degenerate dynamics. We next
classify codimension-one steady-state bifurcations in networks No. 5 by applying
Lyapunov-Schmidt reduction technique (see for example [13, Chapter 1]).

The admissible vector fields of the networks have the form

Ẋ = F (X, λ), (4)

where λ ∈ R+ is a bifurcation parameter, X = (x1, x2, x3) ∈ R+
3
, and

F (X, λ) = (F 1(X, λ), F 2(X, λ), F 3(X, λ))
= (−h1(x1) + f1(x2, x3, λ),−h2(x2) + f2(x1, λ),−h3(x3) + f3(x1, λ)).

(5)
We assume that (4)-(5) has an equilibrium X0 = (x0

1, x
0
2, x

0
3) when λ = λ0 and the

Jacobian J at the equilibrium has a zero eigenvalue. Generically, the kernel space of
the Jacobian is one dimensional. We now investigate what kind of codimension-one
steady-state bifurcation can occur.

Using Lyapunov-Schmidt reduction method, we can reduce the original steady-
state problem F (X, λ) = 0 to a one-dimensional algebraic equation (see Appendix B
for the detailed calculation). The reduced equation has the form:

g(x, λ) = 0, x ∈ Ker(J),

and its lower order derivatives satisfy:

g(X0, λ0) = 0
gx(X0, λ0) = 0
gλ(X0, λ0) = h2

2h
3
3(−h1

λ + f1
λ) + (−h2

λ + f2
λ)f1

2 h3
3 + (−h3

λ + f3
λ)f1

3 h2
2

gxx(X0, λ0) = f1
22(f

2
1 )2(h3

3)
3h2

2 + f1
33(f

3
1 )2(h2

2)
3h3

3 + 2f1
23f

2
1f3

1 (h2
2)

2(h3
3)

2

+f2
11f

1
2 (h2

2)
2(h3

3)
2 + f3

11f
1
3 (h2

2)
2(h3

3)
2 − h1

11(h
2
2)

3(h3
3)

3

−h2
22(f

2
1 )3(h3

3)
3 − h3

33(f
3
1 )3(h2

2)
3,

(6)

where hi
j = ∂hi

∂xj
, hi

λ = ∂hi

∂λ
, f i

jk = ∂2fi

∂xj∂xk
, and f i

λ = ∂fi

∂λ
, with i, j, k = 1, 2, 3.

Observe that generically, the right-hand side of the last two equations in (6) are
nonzero. Hence, generically gλ 6= 0 and gxx 6= 0. By bifurcation recognition method
[13] it follows that, generically, only saddle-node bifurcation can occur in (4)-(5).

In Remark 1 we explore scenarios in which networks in family No. 5 can exhibit
either symmetry or local symmetry and investigate if, in those cases, degenerate
bifurcation can occur.

Remark 1. Some networks belonging to the family No. 5 in Table 1 may ex-
hibit symmetry if we choose vector fields among the admissible ones satisfying the
following two conditions. One condition is that the dynamics of nodes 2 and 3
are described by identical differential equations. That is, h2(x) = h3(x) ≡ h(x),
f2(x) = f3(x) ≡ f(x). The other condition is that the inputs from nodes 2 and
3 to node 1 are identical, that is, f1(x2, x3) = f1(x3, x2). Under this assumptions
the networks have Z2 = 〈(2, 3)〉 symmetry. The presence of Z2 symmetry typically
leads to pitchfork bifurcation [14]. However, that is not the case for the subfamily of
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networks No. 5 with symmetry since for those networks gλ generically is not equal
to zero even under the symmetric assumption.

Next we consider a scenario in which some networks in family No. 5 have local
symmetry. More precisely, we assume h2(x) = h3(x) ≡ h(x), f2(x) = f3(x) ≡ f(x),
but f1

2 (x2, x3) = −f1
3 (x3, x2). In addition we assume that dynamics of node 1 do

not depend on the bifurcation parameter λ, that is, f1
λ = 0 = h1

λ. Under these
assumptions we claim that if g = 0 = gx, then gλ 6= 0. The proof is as follows. Let
f ′ = f2

1 = f3
1 and h′ = h2

2 = h3
3. Observe that the condition gx = 0 implies that

−h1
1(h

′)2 + f ′h′(f1
2 + f1

3 ) = 0. Since h1
1(h

′)2 > 0 the quantity f ′h′(f1
2 + f1

3 ) has to
be positive. This contradicts the assumption f1

2 = −f1
3 . Therefore, gλ can not be

zero.

4. Discussion. Thomas [31] conjectured that the presence of a negative loop (cir-
cuit) is a necessary condition for stable periodicity. But in the conjecture, he defines
the vector field as

Ẋ = F (X),

which integrates the degradation term −h(xi) in F . In this work, we separate the
interaction terms from degradation terms. That is, we do not count degradation
terms as a negative feedback loops. However, Thomas’ conjecture seems still valid
in our setting. That may imply negative feedback loop is not the only feature
of network architecture responsible for sustained oscillations. That is, some extra
structure might be needed for a feedback loop network to support oscillations.

As remarked in bibliography (see for example [33]), our results suggest that
in order to be capable of producing oscillatory behavior the one feedback loop
networks with two nodes may have evolved using a combination of two strategies:
(1) acquiring the ring simplest architecture, which forces the number of nodes to
increase from two to three; (2) increase the number of loops in the architecture by
forming coupled loops.

Regarding codimension-one steady-state bifurcations from an equilibrium, we
choose to study those bifurcations that can occur in networks in the family No. 5
for its particular feature pointed above. We show, analytically, that generically, a
saddle-node bifurcation from an equilibrium occurs in the system. The classification
of codimension-one steady-state bifurcations for the remaining networks in Table 1
can be performed using the systematic approach we use in this work.

Acknowledgments. The authors thank the referees for helpful comments. The
authors also thank Martin Krupa and Martin Golubitsky for the very useful discus-
sions.

Appendix A. Capacity for multistability, steady-state bifurcation and

oscillations. In this section, we present detailed calculations to support the results
obtained in Section 3.1. We first introduce some known results employed in the
calculations. Then we give the computational details for several representative of
networks in Figure 1.

• Multistability is obtained by directly computing algebraic equations. Our con-
clusions about multistability are based on the following properties on mono-
tonically functions:

Let f1 and f2 be two monotonic functions, then the composition of the two
functions satisfies:
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1. f1 ◦ f2 is monotonically increasing if both functions are either positive or
negative.

2. f1 ◦ f2 is monotonically decreasing if one of them is monotonically de-
creasing and the other is increasing.

Let f1(x) and f2(x) be two monotonic functions, then
1. if one of the function is monotonic decreasing and the other is increasing,

then there is at most one solution to the algebraic equation: f1(x) =
f2(x).

2. if both of the functions are either monotonically decreasing or increasing,
then there might be multiple solutions to the equation f1(x) = f2(x).

• The principle for determining the capacity of a network for steady-state bi-
furcations is the determinant of Jacobian being zero. Thus, we only need to
determine whether or not the constant term in the characteristic equation can
be zero.

• The principle for determining the capacity of a network for oscillations via
Hopf bifurcation is the Jacobian has a pair of pure imaginary eigenvalues. For
a network with three nodes, the characteristic polynomial P (λ) is order three.
Let

P (λ) = λ3 + a1λ
2 + a2λ + a3. (7)

Then the equation P (λ) = 0 has a pair of pure imaginary eigenvalues if and
only if

a2 > 0, and a1a2 − a3 = 0.

Networks of family No. 2 in Figure 1. The corresponding vector field has the
following form of

ẋ1 = −h1(x1) + f1(x2)
ẋ2 = −h2(x2) + f2(x1).

(8)

Multistability.

The equilibria for (8) satisfy:

h1(x1) = f1(x2) and h2(x2) = f2(x1).

Since hi are monotonic, we have

h2(x2) = f2((h1)−1 ◦ f1(x2)).

Note that hi are monotonically increasing. According to the facts we stated in
the beginning of the section, the network admits multiple equilibria if f2 ◦ f1 is in-
creasing; otherwise, the network admits at most one solution. That is, only positive
feedback loops admit multistability.

Steady-state bifurcation.

The Jacobian of the system has the form of

J =

(

−h1
1 f1

2

f2
1 −h2

2,

)

and det(J) = h1
1h

2
2−f1

2f1
3 . It follows from det(J) that positive feedback loops admit

steady-state bifurcation.
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Hopf bifurcation.

Note that Trace(J) = −(h1
1 + h2

2) < 0. Hence, it is impossible for the Jacobian
having a pair of pure imaginary eigenvalues. Thus, no networks in this family admit
Hopf bifurcation.
Family of networks No. 5 in Figure 1. The corresponding vector field has the
following form

ẋ1 = −h1(x1) + f1(x2, x3)
ẋ2 = −h2(x2) + f2(x1)
ẋ2 = −h3(x3) + f3(x1).

(9)

Multistability.

The equilibria for (9) satisfy:

x2 = (h2)−1 ◦ f2(x1), x3 = (h3)−1 ◦ f3(x1) and h1(x1) = f1(x2, x3).

Substituting the first two equalities into the third one, we obtain

h1(x1) = f1(((h2)−1 ◦ f2)(x1), ((h
3)−1 ◦ f3)(x1)).

Note that if f1 ◦f2 is increasing, we can arrange for the coupling between x3 and
x1 to be weak enough such that the value of the right-hand side of (A) is determined
by the first argument of the function f1. That is, the monotonicity is determined
by f1 ◦ f2. Hence, the coupled feedback loops admit multistability if it contains at
least one positive feedback loop.

Hopf bifurcation.

Using the coefficients of the characteristic polynomial of J , defined as in (7), we
now check when do the conditions a2 > 0 and a1a2 − a3 = 0 are satisfied. Observe
that

a2 = h1
1h

2
2 + h1

1h
3
3 + h2

2h
3
3 − f1

2 f2
1 − f1

3 f3
1 .

0 = a1a2 − a3 = (h1
1 + h2

2)(h
1
1h

2
2 + h1

1h
3
3 + h2

2h
3
3) + h3

3(h
1
1h

3
3 + h2

2h
3
3)

−(h1
1 + h3

3)f
1
3 f3

1 − (h1
1 + h2

2)f
1
2 f2

1
(10)

By a2 > 0, we have

h1
1h

2
2 + h1

1h
3
3 + h2

2h
3
3 > f1

2 f2
1 + f1

3 f3
1 . (11)

Substituting the inequality (11) into equality (10) yields

(h3
3 − h2

2)f
1
3 f3

1 > (h3
3)

2(h2
2 + h1

1).

On the other hand, the symmetric form of cells 2 and 3 implies that

(h2
2 − h3

3)f
1
2 f2

1 > (h2
2)

2(h3
3 + h1

1).

Note that hi
i > 0 since hi are montonically increasing. In order to satisfy the above

two inquality, f1
3 f3

1 and f1
2f2

1 must have opposite sign.
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Appendix B. Steady-state bifurcations. We illustrate how to classify codi-
mension-one steady-state bifurcations from an equilibrium X0 = (x0

1, x
0
2, x

0
3) for

networks in Figure 1 using lyapunov-Schmidt reduction technique. We apply the
technique to the vector fields of the networks in family No. 5 and we show that,
generically, the systems undergo a saddle-node bifurcation. In Section B.1 we prove
this result in a general framework. In Section B.2 we illustrate the calculations for a
particular vector fields in the class of admissible vector fields for networks in family
No. 5. This chosen vector field is used in [18] to draw numerically the bifurcation
diagram.

B.1. General result. Consider the feedback loop in Figure 1, family No. 5. We
write the system of admissible vector fields as

Ẋ = F (X, λ), (12)

where λ ∈ R+ is a bifurcation parameter, X = (x1, x2, x3) ∈ R+
3
, and F (X, λ) is

(F 1(X, λ), F 2(X, λ), F 3(X, λ))

= (−h1(x1) + f1(x2, x3, λ),−h2(x2) + f2(x1, λ),−h3(x3) + f3(x1, λ)). (13)

We assume that the system (12)-(13) has an equilibrium X0 = (x0
1, x

0
2, x

0
3). Also, we

assume that the steady-state bifurcation occurs at (X0, λ0) with a zero eigenvalue
with algebraic multiplicity one. Let J be the Jacobian matrix associate to (12)-(13)
evaluated at (X0, λ0). Let

A = −h1
1(h

2h3)2 + f1
22(h

3f2
1 )2 + f1

33(h
2f3

1 )2 + f1
23f

2
1 f3

1h2(h3)2

and

B = h2h3A + (h3)3f1
2 [f2

11(h
2)2 − h2

2(f
2
1 )2] + (h2)3f1

3 [f3
11(h

3)2 −
−(f3

1 )2h3
3], (14)

where hi
j = ∂hi

dxj
and f i

jk = ∂2fi

∂xj∂xk
, with i, j, k = 1, 2, 3.

We claim that if

h1h2h3 = h2f1
3f3

1 +h3f1
2f2

1 , h2h3f1
λ +h3f1

2f2
λ +h2f1

3f1
λ 6= 0, and B 6= 0

(15)
holds then, generically a saddle-node bifurcation occurs for the system at (X0, λ0).

We next proof this claim. Note that a necessary and sufficient condition for
steady-state bifurcation to occur is

det J = 0.

A straightforward calculation shows that detJ = 0 if the first condition in the claim
is satisfied. The simple eigenvalue of J implies that the reduced equation obtained
by applying lyapunov-Schmidt reduction to (12)-(13) has the general form

g(x, λ) = 0, (16)

where x ∈ R, g : R×R → R is smooth, and g(X0, λ0) = gx(X0, λ0) = 0. We next
solve (16) near (X0, λ0). We claim that generically (16) satisfies

gxx(X0, λ0) 6= 0 6= gλ(X0, λ0), (17)
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from which follows that saddle-node bifurcation occurs. To compute gxx(X0, λ0)
and gx(X0, λ0) we use the following formulaes for the derivatives of the lyapunov-
Schmidt reduction equation given, for example, in [13, Chapter 1, p. 33]

gxx(X0, λ0) = 〈v∗0 , d2F (v0, v0)〉 and gλ(X0, λ0) = 〈v∗0 , Fλ(X0, λ0)〉,
(18)

where v0 ∈ kerJ , v∗0 ∈ (range J)⊥. To compute these vectors we use J evaluated
at (X0, λ0) and the first condition in (15). We found that

v0 = (h2h3, h3f2
1 , h2f3

1 ) and v∗0 = (h2h3, h3f1
2 , h2f1

3 ).

A straightforward calculation using (13) and the formula for gλ(X0, λ0) in (18)
shows that

gλ(X0, λ0) = h2h3f1
λ + h3f1

2 f2
λ + h2f1

3f1
λ, (19)

where f i
λ =

∂f i

∂λ
, i = 1, 2, 3. Note that generically the right-hand side of (19) is

nonzero.
We next compute gxx(X0, λ0). Let u = (u1, u2, u3) and v = (v1, v2, v3) be vectors

in R3. By definition

d2F l(u, v) =

3
∑

i,j=1

∂2F l

∂xi∂xj

(X0, λ0)uivj . (20)

Calculate d2F l(v0, v0) using (20) and substitute into the first formula in (18) yields

gxx(X0, λ0) = B,

where B is given in (14), which is generically nonzero.

B.2. Particular example. Here we illustrate the proof given in B.1 using a par-
ticular vector fields satisfying (12) and (13). That is, we assume the vector field
is































ẋ1 = −x1 + λ
x2

2 + x2
3

1 + x2
2 + x2

3

≡ F 1

ẋ2 = −x2 + λ
x2

1

1 + x2
1

≡ F 2

ẋ3 = −x3 + λ
x2

1

1 + x2
1

≡ F 3,

(21)

where the xi’s are one-dimensional and λ is the bifurcations parameter and rep-
resents the coupling strength. We observe that, as mentioned before, in [18] the
authors use this vector field to draw numerically the bifurcation diagram.

Note that the equilibria of (21) satisfy

x2 = x3 =
λx2

1

1 + x2
1

and x1 =
2λx2

2

1 + 2x2
2

.

In particular (x1, x2, x3, λ) = (0, 0, 0, λ) is an equilibrium for the system, which we
call trivial. The Jacobian evaluated at any equilibrium point has the form

J =





−1 a a
b −1 0
b 0 −1



 , (22)

with

a =
2λx2

(1 + 2x2
2)

2
and b =

2λx1

(1 + x2
1)

2
. (23)
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When considering the trivial equilibrium it follows that J = −I, where I denote
the 3 × 3 identity matrix. Thus, detJ = −1 6= 0. Hence, the implicit function
theorem guarantees the existence of an unique branch of equilibria parameterized
by λ, which, after a λ−dependent affine linear change in coordinates, we can assume
is (0, 0, 0, λ). The equilibria on this branch are stable.

We next classify steady-state bifurcations from a fixed nontrivial equilibrium
X0 = (x0

1, x
0
2, x

0
3) for (21). This type of bifurcation occurs in the system if and only

if
detJ = −1 + 2ab = 0 ⇔ 2ab = 1 (24)

holds. We assume that the bifurcation occurs at (X0, λ0) with λ0 6= 0 since, oth-
erwise detJ = −1 6= 0 and we would have the unique branch of trivial solutions
identified previously. A straightforward calculation shows that the eigenvalues of
J are −1, 1 +

√
2ab, and 1 −

√
2ab, which are real and distinct. Hence, when (24)

holds J has a simple zero eigenvalue. Under this assumptions we claim that generi-
cally the bifurcation is of type saddle-node. This follows directly from the fact that
the system (21) has Z2 = 〈(2, 3)〉 symmetry that acts trivially on kernel of J at
(X0, λ0). The simple eigenvalue of J implies that the reduced equation obtained by
applying lyapunov-Schmidt reduction to (21) has the general form given in (16).

We next solve (16) near (X0, λ0) and show that saddle-node bifurcation occurs
in the system, that is, condition (17) holds. It follows from (22) and (24) that
v0 = (1, b, b), for which the action of Z2 symmetry acts trivially, and v∗0 = (1, a, a).
A straightforward calculation using (12), with coordinate functions defined as in
(21), and the formula for gλ(X0, λ0) in (18) shows that

gλ(X0, λ0) =
2x2

2

1 + 2x2
2

+
2ax2

1

1 + x2
1

> 0,

with a given in (23). Note that the inequality following from the fact that a > 0.
We next compute gxx(X0, λ0). Since v∗0 = (1, a, a), it follows that

gxx(X0, λ0) = d2F 1(v0, v0) + ad2F 2(v0, v0) + ad2F 3(v0, v0). (25)

Calculate d2F l(v0, v0) using (20) and substitute into (25) yields

gxx = 4aλ0(C + D),

with a > 0 given in (23) and

C =
a(1 − 4x2

2)

(1 + 2x2
2)

3
, D =

1 − 3x2
1

(1 + x2
1)

3
.

Observe that generically C + D 6= 0 and since a, λ0 > 0 it follows that generically
gxx 6= 0 as claimed.
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