Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes

  • Received: 01 December 2007 Accepted: 29 June 2018 Published: 01 October 2008
  • MSC : Primary: 68T05, Secondary: 92D40

  • Suspended organic and inorganic particles, resulting from the interactions among biological, physical, and chemical variables, modify the optical properties of water bodies and condition the trophic chain. The analysis of their optic properties through the spectral signatures obtained from satellite images allows us to infer the trophic state of the shallow lakes and generate a real time tool for studying the dynamics of shallow lakes. Field data (chlorophyll-a, total solids, and Secchi disk depth) allow us to define levels of turbidity and to characterize the shallow lakes under study. Using bands 2 and 4 of LandSat 5 TM and LandSat 7 ETM+ images and constructing adequate artificial neural network models (ANN), a classification of shallow lakes according to their turbidity is obtained. ANN models are also used to determine chlorophyll-a and total suspended solids concentrations from satellite image data. The results are statistically significant. The integration of field and remote sensors data makes it possible to retrieve information on shallow lake systems at broad spatial and temporal scales. This is necessary to understanding the mechanisms that affect the trophic structure of these ecosystems.

    Citation: Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes[J]. Mathematical Biosciences and Engineering, 2008, 5(4): 691-711. doi: 10.3934/mbe.2008.5.691

    Related Papers:

    [1] Yufeng Li, Chengcheng Liu, Weiping Zhao, Yufeng Huang . Multi-spectral remote sensing images feature coverage classification based on improved convolutional neural network. Mathematical Biosciences and Engineering, 2020, 17(5): 4443-4456. doi: 10.3934/mbe.2020245
    [2] Eric Ke Wang, Nie Zhe, Yueping Li, Zuodong Liang, Xun Zhang, Juntao Yu, Yunming Ye . A sparse deep learning model for privacy attack on remote sensing images. Mathematical Biosciences and Engineering, 2019, 16(3): 1300-1312. doi: 10.3934/mbe.2019063
    [3] Haifeng Song, Weiwei Yang, Songsong Dai, Haiyan Yuan . Multi-source remote sensing image classification based on two-channel densely connected convolutional networks. Mathematical Biosciences and Engineering, 2020, 17(6): 7353-7377. doi: 10.3934/mbe.2020376
    [4] Keruo Jiang, Zhen Huang, Xinyan Zhou, Chudong Tong, Minjie Zhu, Heshan Wang . Deep belief improved bidirectional LSTM for multivariate time series forecasting. Mathematical Biosciences and Engineering, 2023, 20(9): 16596-16627. doi: 10.3934/mbe.2023739
    [5] Xu Zhang, Wei Huang, Jing Gao, Dapeng Wang, Changchuan Bai, Zhikui Chen . Deep sparse transfer learning for remote smart tongue diagnosis. Mathematical Biosciences and Engineering, 2021, 18(2): 1169-1186. doi: 10.3934/mbe.2021063
    [6] Jianming Zhang , Chaoquan Lu , Xudong Li , Hye-Jin Kim, Jin Wang . A full convolutional network based on DenseNet for remote sensing scene classification. Mathematical Biosciences and Engineering, 2019, 16(5): 3345-3367. doi: 10.3934/mbe.2019167
    [7] Mehrdad Ahmadi Kamarposhti, Ilhami Colak, Kei Eguchi . Optimal energy management of distributed generation in micro-grids using artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2021, 18(6): 7402-7418. doi: 10.3934/mbe.2021366
    [8] Eric Ke Wang, Fan Wang, Ruipei Sun, Xi Liu . A new privacy attack network for remote sensing images classification with small training samples. Mathematical Biosciences and Engineering, 2019, 16(5): 4456-4476. doi: 10.3934/mbe.2019222
    [9] Javier Antonio Ballesteros-Ricaurte, Ramon Fabregat, Angela Carrillo-Ramos, Carlos Parra, Andrés Moreno . Artificial neural networks to predict the presence of Neosporosis in cattle. Mathematical Biosciences and Engineering, 2025, 22(5): 1140-1158. doi: 10.3934/mbe.2025041
    [10] Hacı İsmail Aslan, Hoon Ko, Chang Choi . Classification of vertices on social networks by multiple approaches. Mathematical Biosciences and Engineering, 2022, 19(12): 12146-12159. doi: 10.3934/mbe.2022565
  • Suspended organic and inorganic particles, resulting from the interactions among biological, physical, and chemical variables, modify the optical properties of water bodies and condition the trophic chain. The analysis of their optic properties through the spectral signatures obtained from satellite images allows us to infer the trophic state of the shallow lakes and generate a real time tool for studying the dynamics of shallow lakes. Field data (chlorophyll-a, total solids, and Secchi disk depth) allow us to define levels of turbidity and to characterize the shallow lakes under study. Using bands 2 and 4 of LandSat 5 TM and LandSat 7 ETM+ images and constructing adequate artificial neural network models (ANN), a classification of shallow lakes according to their turbidity is obtained. ANN models are also used to determine chlorophyll-a and total suspended solids concentrations from satellite image data. The results are statistically significant. The integration of field and remote sensors data makes it possible to retrieve information on shallow lake systems at broad spatial and temporal scales. This is necessary to understanding the mechanisms that affect the trophic structure of these ecosystems.


  • This article has been cited by:

    1. Diogo Oliveira, Leonardo Martins, André Mora, Carlos Damásio, Mário Caetano, José Fonseca, Rita A. Ribeiro, Data fusion approach for eucalyptus trees identification, 2021, 42, 0143-1161, 4087, 10.1080/01431161.2021.1883198
    2. Vanesa Y. Bohn, Ana L. Delgado, M. Cintia Piccolo, Gerardo M. E. Perillo, Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina, 2016, 75, 1866-6280, 10.1007/s12665-016-5569-6
    3. Prima Kadavi, Won-Jin Lee, Chang-Wook Lee, Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach, 2017, 7, 2076-3417, 935, 10.3390/app7090935
    4. Katalin Blix, Torbjørn Eltoft, Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval, 2018, 10, 2072-4292, 775, 10.3390/rs10050775
    5. Victoria S. Fusé, M. Eugenia Priano, Karen E. Williams, José I. Gere, Sergio A. Guzmán, Roberto Gratton, M. Paula Juliarena, Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods, 2016, 188, 0167-6369, 10.1007/s10661-016-5601-z
    6. Juan Manuel Núñez, Sandra Medina, Gerardo Ávila, Jorge Montejano, 2019, Chapter 5, 978-1-83880-566-1, 10.5772/intechopen.82729
    7. Vanesa Y. Bohn, Raúl Rivas, Marcelo Varni, M. Cintia Piccolo, Using SPEI in predicting water table dynamics in Argentinian plains, 2020, 79, 1866-6280, 10.1007/s12665-020-09210-0
    8. SARIAN KOSTEN, MARTINE VERNOOIJ, EGBERT H. VAN NES, MARÍA DE LOS Á. G. SAGRARIO, JAN G. P. W. CLEVERS, MARTEN SCHEFFER, Bimodal transparency as an indicator for alternative states in South American lakes, 2012, 57, 00465070, 1191, 10.1111/j.1365-2427.2012.02785.x
    9. Aboul Ella Hassanien, Ashraf Darwish, Sara Abdelghafar, Machine learning in telemetry data mining of space mission: basics, challenging and future directions, 2020, 53, 0269-2821, 3201, 10.1007/s10462-019-09760-1
    10. Evangelos Spyrakos, Ruth O'Donnell, Peter D. Hunter, Claire Miller, Marian Scott, Stefan G. H. Simis, Claire Neil, Claudio C. F. Barbosa, Caren E. Binding, Shane Bradt, Mariano Bresciani, Giorgio Dall'Olmo, Claudia Giardino, Anatoly A. Gitelson, Tiit Kutser, Lin Li, Bunkei Matsushita, Victor Martinez-Vicente, Mark W. Matthews, Igor Ogashawara, Antonio Ruiz-Verdú, John F. Schalles, Emma Tebbs, Yunlin Zhang, Andrew N. Tyler, Optical types of inland and coastal waters, 2018, 63, 00243590, 846, 10.1002/lno.10674
    11. Xiaodong Tang, Mutao Huang, Inversion of Chlorophyll-a Concentration in Donghu Lake Based on Machine Learning Algorithm, 2021, 13, 2073-4441, 1179, 10.3390/w13091179
    12. Tong Zhang, Abid Yahya, Integrating the Big Data in Sports and Resource Interaction Using Artificial Neural Network, 2022, 2022, 1875-905X, 1, 10.1155/2022/6762200
    13. Gonçalo Rodrigues, Miguel Potes, Alexandra Marchã Penha, Maria João Costa, Maria Manuela Morais, The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir, 2022, 14, 2072-4292, 2172, 10.3390/rs14092172
    14. Na Zhang, Fahd Abd Algalil, Psychological Stress Identification and Evaluation Method Based on Mobile Human-Computer Interaction Equipment, 2022, 2022, 1754-2103, 1, 10.1155/2022/6039789
    15. Wenbin Hua, Muhammad Zubair Asghar, Multimodal English Teaching Classroom Interaction Based on Artificial Neural Network, 2022, 2022, 1687-5273, 1, 10.1155/2022/3141451
    16. Lei Sun, Yingxia Li, Yuli Lu, Muhammad Muzammal, Construction of Cloud Library Intelligent Service Platform Relying on Artificial Neural Network, 2022, 2022, 1875-905X, 1, 10.1155/2022/6259127
    17. Alireza Sharifi, Shilan Felegari, Aqil Tariq, Saima Siddiqui, 2021, 9781119793373, 57, 10.1002/9781119793403.ch4
    18. Zhong Chi, Tianxiao Yang, Raghavan Dhanasekaran, Teaching Practice of College Students’ Marketing Course Based on the Background of the Internet Era, 2022, 2022, 2050-7038, 1, 10.1155/2022/3363728
    19. María Laura Maestri, Rosana Monica Ferrati, Graciela Ana Canziani, Variation in the area of the polymictic Pampean shallow lakes and its relationship with precipitation, 2023, 82, 1866-6280, 10.1007/s12665-023-11301-7
    20. Deepak Kumar, Nick P. Bassill, Sukanya Ghosh, Analyzing recent trends in deep-learning approaches: a review on urban environmental hazards and disaster studies for monitoring, management, and mitigation toward sustainability, 2024, 17, 1178-5608, 10.2478/ijssis-2024-0014
    21. Karim Solaimani, Shadman Darvishi, Comparative analysis of land use changes modeling based-on new hybrid models and CA-Markov in the Urmia Lake basin, 2024, 02731177, 10.1016/j.asr.2024.06.078
    22. Ismail Mondal, Isha Jha, SK Ariful Hossain, Aakash De, Hamad Ahmed Altuwaijri, Felix Jose, Tarun Kumar De, Quang-Oai Lu, Nguyen Nguyet Minh, Variability of bio-optical properties of Sundarbans mangrove estuarine ecosystem using elemental analysis, Sentinel 3 OLCI imageries and Neural Network models, 2024, 02731177, 10.1016/j.asr.2024.10.059
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3163) PDF downloads(488) Cited by(22)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog