Research article

Global injectivity of differentiable maps via W-condition in $\mathbb{R}^2$

  • Received: 13 September 2020 Accepted: 16 November 2020 Published: 25 November 2020
  • MSC : 14A25, 14R15, 26B10

  • In this paper, we study the intrinsic relations between the global injectivity of the differentiable local homeomorphism map $F$ and the rate of the Spec$(F)$ tending to zero, where Spec$(F)$ denotes the set of all (complex) eigenvalues of Jacobian matrix $JF(x)$, for all $x\in \mathbb{R}^2$. They depend deeply on the $W$-condition which extends the $*$-condition and the $B$-condition. The $W$-condition reveals the rate that tends to zero of the real eigenvalues of $JF$, which can not exceed $\displaystyle O\Big(x\ln x(\ln \frac{\ln x}{\ln\ln x})^2\Big)^{-1}$ by the half-Reeb component method. This improves the theorems of Gutiérrez [16] and Rabanal [27]. The $W$-condition is optimal for the half-Reeb component method in this paper setting. This work is related to the Jacobian conjecture.

    Citation: Wei Liu. Global injectivity of differentiable maps via W-condition in $\mathbb{R}^2$[J]. AIMS Mathematics, 2021, 6(2): 1624-1633. doi: 10.3934/math.2021097

    Related Papers:

  • In this paper, we study the intrinsic relations between the global injectivity of the differentiable local homeomorphism map $F$ and the rate of the Spec$(F)$ tending to zero, where Spec$(F)$ denotes the set of all (complex) eigenvalues of Jacobian matrix $JF(x)$, for all $x\in \mathbb{R}^2$. They depend deeply on the $W$-condition which extends the $*$-condition and the $B$-condition. The $W$-condition reveals the rate that tends to zero of the real eigenvalues of $JF$, which can not exceed $\displaystyle O\Big(x\ln x(\ln \frac{\ln x}{\ln\ln x})^2\Big)^{-1}$ by the half-Reeb component method. This improves the theorems of Gutiérrez [16] and Rabanal [27]. The $W$-condition is optimal for the half-Reeb component method in this paper setting. This work is related to the Jacobian conjecture.


    加载中


    [1] A. Belov, L. Bokut, L. Rowen, J. T. Yu, Automorphisms in Birational and Affine Geometry, Vol. 79, Springer International Publishing Switaerland, 2014.
    [2] H. Bass, E. Connell, D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 2 (1982), 287-330.
    [3] M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to the symmetric case, Proc. Amer. Math. Soc., 8 (2005), 2201-2205.
    [4] F. Braun, J. Venato-Santos, Half-Reeb components, Palais-Smale condition and global injectivity of local diffeomorphisms in $\mathbb{R}^3$, Publ. Mat., 58 (2014), 63-79.
    [5] M. Chamberland, G. Meisters, A mountain pass to the Jacobian conjecture, Canad. Math. Bull., 41 (1998), 442-451. doi: 10.4153/CMB-1998-058-4
    [6] A. Cima, A. Gasull, F. Manosas, The discrete Markus-Yamabe problem, Nonlinear Anal. Theory Methods Appl., 35 (1999), 343-354. doi: 10.1016/S0362-546X(97)00715-3
    [7] A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Manosas, A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457. doi: 10.1006/aima.1997.1673
    [8] S. L. Cynk, K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polo. Math., 1 (1991), 31-35.
    [9] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Berlin: Birkhäuser, 2000.
    [10] A. van den Essen, The amazing image conjecture, Image, 1 (2010), 1-24.
    [11] A. Fernandes, C. Gutiérrez, R. Rabanal, Global asymptotic stability for differentiable vector fields of $\mathbb{R}^2$, J. Diff. Equat., 206 (2004), 470-482. doi: 10.1016/j.jde.2004.04.015
    [12] R. Fessler, A proof of the two dimensional Markus-Yamabe stability conjecture and a generalization, Ann. Polon. Math., 62 (1995), 45-74. doi: 10.4064/ap-62-1-45-74
    [13] C. Gutiérrez, A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. Henri Poincaré, 12 (1995), 627-671. doi: 10.1016/S0294-1449(16)30147-0
    [14] C. Gutiérrez, C. Maquera, Foliations and polynomial diffeomorphisms of $\mathbb{R}^3$, Math. Z., 162 (2009), 613-626.
    [15] C. Gutiérrez, B. Pires, R. Rabanal, Asymototic stability at infinity for differentiable vector fields of the plane, J. Diff. Equat., 231 (2006), 165-181. doi: 10.1016/j.jde.2006.07.025
    [16] C. Gutiérrez, N. Van. Chau, A remark on an eigenvalue condition for the global injectivity of differentiable maps of $\mathbb{R}^2$, Disc. Contin. Dyna. Syst., 17 (2007), 397-402. doi: 10.3934/dcds.2007.17.397
    [17] C. Gutiérrez, R. Rabanal, Injectivity of differentiable maps $\mathbb{R}^2$ → $\mathbb{R}^2$ at infinity, Bull. Braz. Math. Soc. New Series, 37 (2006), 217-239. doi: 10.1007/s00574-006-0011-4
    [18] C. Gutiérrez, A. Sarmiento, Injectivity of C1 maps $\mathbb{R}^2$ → $\mathbb{R}^2$ at infinity, Asterisque, 287 (2003), 89-102.
    [19] O. H. Keller, Ganze gremona-transformation, Monatsh. Math., 47 (1929), 299-306.
    [20] A. Belov-Kanel, M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier conjecture, Mosc. Math. J., 7 (2007), 209-218. doi: 10.17323/1609-4514-2007-7-2-209-218
    [21] W. Liu, Q. Xu, A minimax principle to the injectivity of the Jacobian conjecture, arXiv.1902.03615, 2019.
    [22] W. Liu, A minimax method to the Jacobian conjecture, arXiv.2009.05464, 2020.
    [23] C. Maquera, J. Venato-Santos, Foliations and global injectivity in $\mathbb{R}^n$, Bull. Braz. Math. Soc. New Series, 44 (2013), 273-284. doi: 10.1007/s00574-013-0013-y
    [24] L. Markus, H. Yamabe, Global stability criteria for differential system, Osaka Math. J., 12 (1960), 305-317.
    [25] S. Pinchuk, A counterexamle to the strong real Jacobian conjecture, Math. Z., 217 (1994), 1-4. doi: 10.1007/BF02571929
    [26] R. Rabanal, An eigenvalue condition for the injectivity and asymptotic stability at infinity, Qual. Theory Dyn. Syst., 6 (2005), 233-250. doi: 10.1007/BF02972675
    [27] R. Rabanal, On differentiable area-preserving maps of the plane, Bull. Braz. Math. Soc. New Series, 41 (2010), 73-82. doi: 10.1007/s00574-010-0004-1
    [28] P. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. Math., 146 (1997), 647-691. doi: 10.2307/2952457
    [29] P. Rabier, On the Malgrange condition for complex polynomials of two variables, Manuscr. Math., 109 (2002), 493-509. doi: 10.1007/s00229-002-0322-8
    [30] B. Smyth, F. Xavier, Injectivity of local diffeomorphisms from nearly spectral conditions, J. Diff. Equat., 130 (1996), 406-414. doi: 10.1006/jdeq.1996.0151
    [31] W. Zhao, New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc., 139 (2011), 3141-3154. doi: 10.1090/S0002-9939-2011-10744-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(347) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog