
Citation: Bundit Unyong, Vediyappan Govindan, S. Bowmiya, G. Rajchakit, Nallappan Gunasekaran, R. Vadivel, Chee Peng Lim, Praveen Agarwal. Generalized linear differential equation using Hyers-Ulam stability approach[J]. AIMS Mathematics, 2021, 6(2): 1607-1623. doi: 10.3934/math.2021096
[1] | Murali Ramdoss, Ponmana Selvan-Arumugam, Choonkil Park . Ulam stability of linear differential equations using Fourier transform. AIMS Mathematics, 2020, 5(2): 766-780. doi: 10.3934/math.2020052 |
[2] | S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee . Mahgoub transform and Hyers-Ulam stability of $ n^{th} $ order linear differential equations. AIMS Mathematics, 2022, 7(4): 4992-5014. doi: 10.3934/math.2022278 |
[3] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[4] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[7] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[8] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
[9] | Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338 |
[10] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
The challenge of stability with respect to the functional equation stemmed from an issue of Ulam [1] concerning the strength of gathering homomorphisms. Suppose G1 is a group, and G2 is a measurement group with metric d(.,.). Given ∈>0, does a δ>0 exist to such an extent that if a mapping H:G1→G2 fulfills the imbalance d(H(ϰν),H(ϰ)H(ν))<δ with respect to ϰ,ν∈G1, and as such, there exists a homomorphism h:G1→G2 with d(H(ϰ),h(ϰ))<ϵ with respect to ϰ∈G1? If the mapping is almost a homomorphism, and as such, there exists a true homomorphism of s, what would be the error that could reasonably be expected?
The problem from the instance of roughly additive mappings was formulated by Hyers [2] with G1 and G2 as the Banach spaces. Then, Rassias (see [3]) summed up the effects of the study of Hyers. Since then, the dependability issues of practical conditions have been widely examined by researchers, e.g. see [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]).
Supposedly, the study of Ozawa [8] was among the first attempts on managing the H−U stability of differential equations. In [5], the H−U stability of differential condition ψ′(ϰ)=ψ(ϰ) was analyzed. Then, the studies of [18,19] have been further extended to the Banach space differential condition ψ′(ϰ)=λψ(ϰ). Utilizing a direct strategy, cycle technique, find point technique, and open mapping theorem, the H−U stability of certain classes of useful fractional differential equations have been explored, e.g. see [1,12,13,18,19,20]).
In this paper, we investigate the Hyers-Ulam stability of linear differential equation of the fourth order. Specifically, ψ is an interact arrangement of the following differential equation:
ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) |
where ψ∈c4[ℓ,μ],Ψ∈[ℓ,μ]. We demonstrate that ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) has the Hyers-Ulam stability. A numerical example is provided to illustrate the proposed method.
Moreover, the effects of H−U stability for the first order differential conditions were studied in [14,16,19]. These studies focused on the non-homogeneous straight differential equation of the first order, i.e.,
ψ′+ξ(s)ψ+σ(s)=0. | (1.1) |
Jung [14] demonstrated the H−U stability with respect to the differential condition of the following form:
sψ′(s)+ℓψ(s)+μsψϰ0=0 |
and further applied the outcome to examine the H−U stability of the following differential equation
s2ψ″(s)+asψ′(s)+bψ(s)=0. | (1.2) |
Then, Wang, Zhon and Sun [20] examined the H−U stability of the the first order linear differential condition, i.e.,
ξ(ϰ)ψ′+σ(ϰ)ψ+ν(ϰ)=0. | (1.3) |
In this study, we study the following implication of H−U stability.
Definition 1.1. We denote that Eq 1.2 has the H−U Stability if there exists a steady λ>0 with the accompanying property of: for every ϵ>0,ψ∈c2[ℓ,μ], if
|ψ″+aψ′+bψ|≤ϵ, | (1.4) |
as such, there exists some u∈c2[ℓ,μ] that fulfill:
|u″+au′+bu|=0 | (1.5) |
such that |ψ(ϰ)−u(ϰ)|<λϵ. We denote such λ a H−U stability constant for Eq 1.2.
Definition 1.2. We denote that the extension of Eq 1.2 has the H−U stability, if there exists a steady λ>0 with the accompanying property of: for every ϵ>0,ψ∈c3[ℓ,μ], if
|ψ‴+aψ″+bψ′+cψ|≤ϵ, | (1.6) |
As such, there exist some u∈c3[ℓ,μ] that fulfill
|u‴+au″+bu′+cu|=0 | (1.7) |
such that |ψ(ϰ)−u(ϰ)|<λϵ. We denote such λ a H−U stability constant for Equation 1.6.
Definition 1.3. We denote that the extension of Eq 1.6 has the H−U stability, if there exists a steady λ>0 with the accompanying property of: for every ϵ>0,ψ∈c4[ℓ,μ], if
|ψiv+ξ1ψ‴+ξ2ψ″+ξ3ψ′+ξ4ψ|≤ϵ, | (1.8) |
as such, there exist some u∈c4[ℓ,μ] that fulfill
|uiv+ξ1u‴+ξ2u″+ξ3u′+ξ4u|=0 | (1.9) |
such that |ψ(ϰ)−u(ϰ)|<λϵ. We denote such λ a H−U stability constant for Eq 1.8.
Now, the key results of this study are given in the following hypothesis.
Lemma 2.1. The differential equation j ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) has the Hyers -Ulam stability, where ψ∈c4[ℓ,μ] and Ψ∈[ℓ,μ].
Proof. Assume that u1,u2,u3, and u4 are the roots of ν4+ξ1ν3+p2ν2+p3ν+p4=0 with q1=Ru1,q2=Ru2,q3=Ru4, and q4=Ru3. Here R means the real parts.
Suppose ϵ>0 and ψ∈c4[ℓ,μ]
|ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)−Ψ(ϰ)|≤ϵ | (2.1) |
and let
g1(ϰ)=ψ‴(ϰ)+(u1+ξ1)ψ″(ϰ)+(u21+ξ1u1+ξ2)ψ′(ϰ) +(u31+ξ1u21+ξ2u1+ξ3)ψ(ϰ), |
we obtain
g′1(ϰ)=ψ‴(ϰ)+(u1+ξ1)ψ‴(ϰ)+(u21+ξ1u1+ξ2)ψ″(ϰ)+(u31+ξ1u21+ξ2u1+ξ3)ψ′(ϰ)+(u41+ξ1u31+ξ2u21+ξ3u1+ξ4)ψ(ϰ) | (2.2) |
with respect to ϰ∈[ℓ,μ]. As such,
|g′1(ϰ)−u1g1(ϰ)−Ψ(ϰ)|≤ϵ | (2.3) |
with respect to ϰ∈[ℓ,μ], it yields that
|g′1(ϰ)−u1g1(ϰ)−Ψ(ϰ)|=|ψ‴(ϰ)+(u1+ξ1)ψ‴(ϰ)+(u21+ξ1u+ξ2)ψ″(ϰ)+(u31+ξ1u21+ξ2u2+ξ3)ψ′(x)+(u41+ξ1u31+ξ2u21+ξ3u1+ξ4)ψ(ϰ)−u1(ψ‴(ϰ)+(u1+ξ)ψ″(ϰ)+u21+(ξ1u1+ξ2)ψ′(ϰ)+((u31+ξ1u21+ξ2u1+ξ3)ψ(ϰ))−Ψ(ϰ)| | (2.4) |
with respect to ϰ∈[ℓ,μ]. Utilizing the above condition, we obtain
|g′1(ϰ)−u1g1(ϰ)−Ψ(ϰ)|=|ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψn(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)|<ϵ. |
with respect to ϰ∈[ℓ,μ]. Similarly, g1 fulfills
−ϵ≤g′1(ϰ)−u1g1(ϰ)−Ψ(ϰ)≤ϵ | (2.5) |
with respect to ϰ∈[ℓ,μ]. Multiplying the above condition by e−u1(ϰ−ℓ) yields
ϵe−u1(ϰ−ℓ)≤g′1(ϰ)e−u1(ϰ−ℓ)−u1g1(ϰ)e−u1(ϰ−ℓ)−Ψ(ϰ)e−u1(ϰ−ℓ)≤∈e−u1(ϰ−ℓ) | (2.6) |
with respect to ϰ∈[ℓ,μ]. Without loss of generality, we accept that u1>1; therefore
−u1ϵe−u1(ϰ−ℓ)≤g′1(ϰ)e−u1(ϰ−ℓ)−u1g1(ϰ)e−u1(ϰ−ℓ)−Ψ(ϰ)e−u1(ϰ−ℓ)≤u1e−u1(ϰ−ℓ) | (2.7) |
with respect to ϰ∈[ℓ,μ]. Integrating 2.7 from ϰ to μ, we obtain
−ϵ(−e−u1(μ−ℓ)+e−u1(ϰ−ℓ))≤g1(μ)e−u1(μℓ)−g1(ϰ)e−u1(ϰ−ℓ)−∫μϰΨ(s)e−u1(s−ℓ)ds≤ϵ(−e−u1(μ−ℓ)+e−u1(ϰ−ℓ)) | (2.8) |
with respect to ϰ∈[ℓ,μ]; therefore
−ϵe−u1(ϰ−ℓ)≤g1(μ)e−u1(ϰ−ℓ)−ϵe−u1(μ−ℓ)−g1(ϰ)e−u1(ϰ−ℓ)−∫μϰΨ(s)e−u1(s−ℓ)ds≤∈(−e−u1(ϰ−ℓ)+e−u1(μ−ℓ)) | (2.9) |
with respect to ϰ∈[ℓ,μ]. The above condition yields
ϵ−e−u1(ϰ−ℓ)≤g1(μ)−e−u1(ϰ−ℓ)−ϵ−e−u1(μ−ℓ)−g1(ϰ)−e−u1(ϰ−ℓ)−∫μϰΨ(s)e−u1(s−ℓ)ds≤ϵe−u1(ϰ−ℓ) | (2.10) |
with respect to ϰ∈[ℓ,μ]. Multiplying 2.10 by eu1(ϰ−ℓ) on both sides, we obtain
−ϵ≤g1(μ)e−u1(μ−ϰ)−ϵe−u1(μ−ϰ)−g1(ϰ)−e−u1ϰ∫μϰΨ(s)e−u1sds≤ϵ | (2.11) |
therefore
−ϵ≤g1(μ)eu1(ϰ−μ)−ϵeu1(ϰ−μ)−g1(ϰ)−eu1ϰ∫μϰΨ(s)e−u1sds≤ϵ | (2.12) |
with respect to ϰ∈[ℓ,μ]. Let
ζ(ϰ)=g1(μ)eu1(ϰ−μ)−eu1(ϰ)∫μϰΨ(s)e−u1sds, |
then ζ(ϰ) fulfills ζ′(ϰ)=u1ζ(ϰ)+Ψ(ϰ) with respect to ϰ∈[ℓ,μ]. It satisfies the inequality of
|ζ(ϰ)−g1(ϰ)|=|g1(μ)eu1(ϰ−μ)−g1(ϰ)−eu1ϰ∫μϰΨ(s)e−u1sds|=eξϰ|∫μϰ[e−u1sg1(s)]lds−∫μϰΨ(s)e−u1sds|≤eξϰ∫μϰe−ξs|g′1(s)−u1g1(s)−Ψ(s)|ds≤ϵeξϰ∫μϰe−ξsds | (2.13) |
with respect to ϰ∈[ℓ,μ]. If ξ≠0, then
|ζ(ϰ)−g1(ϰ)|≤ϵeξϰ∫μϰe−ξsds≤ϵξ(1−e−ξ(μ−ℓ)) | (2.14) |
with respect to ϰ∈[ℓ,μ]. If ξ=0, then
|ζ(ϰ)−g1(ϰ)|≤ϵeξϰ∫μϰe−ξsds≤ϵ(μ−ℓ) | (2.15) |
with respect to ϰϵ[ℓ,μ]. Therefore
|ζ(ϰ)−g1(ϰ)|≤{1−e−ξ(μ−ℓ)ξ;if ξ≠0(μ−ℓ)ϵ;if ξ=0. | (2.16) |
Theorem 2.2. The differential equation ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) has the H−U stability, where ψ∈c4[ℓ,μ] and Ψ∈[ℓ,μ]. Therefore
|λ(ϰ)−h(ϰ)|≤{(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))ϵψξ;if ξ,ψ≠01−e−ψ(μ−ℓ)(μ−ℓ)ϵψ;if ξ≠0,ψ≠01−e−ξ(μ−ℓ)(μ−ℓ)ϵξ;if ξ≠0,ψ=0(μ−ℓ)2ϵ;if ξ=0,ψ=0 |
with respect to ϰ∈[ℓ,μ].
Proof. Similar to the proof of Lemma 2.1. Let H(ϰ)=ψ′(ϰ)−u2ψ(ϰ) by H′(ϰ)=ψ″(ϰ)−u1ψ′(ϰ) and let ϵ>0;ψ∈c4[ℓ,μ].
In addition,
|H′(ϰ)−u4H(ϰ)−ζ(ϰ)|=|ζ(ϰ)−g(ϰ)| | (2.17) |
with respect to ϰ∈[ℓ,μ]. Therefore
|H′(ϰ)−u4H(ϰ)−ζ(ϰ)|≤ϵ | (2.18) |
with respect to ϰ∈[ℓ,μ]. Equivalently H fulfills
|H′(ϰ)−u4H(ϰ)−ζ(ϰ)|=|ψ″(ϰ)−(u1+u4)ψ′(ϰ)+u1u4ψ(ϰ)−ζ(ϰ)|=|ψ″(ϰ)+ξ1ψ′(ϰ)+ξ2ψ(ϰ)−ζ(ϰ)|<ϵ | (2.19) |
with respect to ϰ∈[ℓ,μ]. Multiplying 2.19 by e−u4(ϰ−ℓ) on both sides yields
−ϵe−u4(ϰ−ℓ)≤H′(ϰ)e−u4(ϰ−ℓ)−u4H(ϰ)e−u4(ϰ−ℓ)−ζ(ϰ)e−u4(ϰ−ℓ)≤ϵe−u4(ϰ−ℓ) | (2.20) |
with respect to ϰ∈[ℓ,μ]. Without loss of generality, we accept that u4>1; therefore
u4∈e−u4(ϰ−ℓ)≤H′(ϰ)e−u4(ϰ−ℓ)−H(ϰ)e−u4(ϰ−ℓ)−ζ(ϰ)e−u4(ϰ−ℓ)ϵu4e−u4(ϰ−ℓ) | (2.21) |
with respect to ϰ∈[ℓ,μ]. Integrating 2.21 from ϰ to μ, we obtain
−ϵ(e−u4(ϰ−ℓ)−e−u4(μ−ℓ))≤H(μ)e−u4(μ−ℓ)−H(ϰ)e−u4(ϰ−ℓ)−∫μϰζ(s)e−u4(ϰ−ℓ)ds≤ϵ(e−u4(ϰ−ℓ)−e−u4(μ−ℓ)) | (2.22) |
with respect to ϰ∈[ℓ,μ]. Based on 2.22, we obtain
−ϵe−u4(ϰ−ℓ)≤H(μ)e−u4(μ−ℓ)−ϵe−u4(μ−ℓ)−H(ϰ)e−u4(ϰ−ℓ)−∫μϰζ(s)e−u4(ϰ−ℓ)ds≤ϵ(e−u4(ϰ−ℓ)) | (2.23) |
with respect to ϰ∈[ℓ,μ]. Multiplying 2.23 by the function e−u4(ϰ−ℓ), we obtain
−ϵ≤H(μ)e−u4(μ−ϰ)−ϵe−u4(μ−ϰ)−H(ϰ)−eu4ϰ∫μϰζ(s)eu4sds≤ϵ | (2.24) |
with respect to ϰ∈[ℓ,μ]. Based on 2.24, we obtain
−ϵ≤H(μ)eu4(ϰ−μ)−ϵeu4(ϰ−μ)−H(ϰ)−eu4ϰ∫μϰζ(s)eu4sds≤ϵ | (2.25) |
with respect to ϰ∈[ℓ,μ]. Let λ(ϰ)=H(μ)e−u4(ϰ−μ)−eu4ϰ∫μϰζ(s)e−u4sds with respect to ϰ∈[ℓ,μ]. Then
λ′(ϰ)−u4λ(ϰ)−ζ(ϰ)=0 byλ′(ϰ)=u4λ(ϰ)+ζ(ϰ). |
Therefore
|λ(ϰ)−H(ϰ)|=eu4(ϰ−μ)H(μ)−H(ϰ)−eu4ϰ∫μℓζ(s)e−u4sds=eψϰ|∫μℓ[e−u4sH(s)−]−∫μℓζ(s)e−u4sds|≤eψϰ∫μϰ|e−u4s||H′(s)−u4H(s)−ζ(t)|ds≤eψϰ∫μϰe−ψs|H′(s)−u4H(s)−ζ(t)|ds|λ(ϰ)−H(ϰ)|≤ϵeψϰ∫μϰe−ψsds | (2.26) |
with respect to ϰ∈[ℓ,μ]. If ψ≠0, then
|λ(ϰ)−H(ϰ)|≤ϵeψϰ∫μϰe−ψsds≤ϵψ[1−e−ψ(μ−ϰ)]|λ(ϰ)−H(ϰ)|≤ϵψ[1−e−ψ(μ−ℓ)] | (2.27) |
with respect to ϰ∈[ℓ,μ]. If ψ=0, then
|λ(ϰ)−H(ϰ)|≤ϵ(μ−ℓ) | (2.28) |
with respect to ϰ∈[ℓ,μ]. Based on 2.16, we obtain
|λ(ϰ)−H(ϰ)|≤{(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))ϵψξ;if ξ,ψ≠01−e−ψ(μ−ℓ)(μ−ℓ)ϵψ;if ξ=0,ψ≠01−e−ξ(μ−ℓ)(μ−ℓ)ϵξ;if ξ≠0,ψ=0(μ−ℓ)2ϵ;if ξ=0,ψ=0 | (2.29) |
with respect to ϰ∈[ℓ,μ].
Theorem 2.3. The DE ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) has the Hyers Ulam stability, where ψ∈c4[ℓ,μ] and with respect to ϰ∈[ℓ,μ], |u(ϰ)−ψ(ϰ)|≤T
where
T={(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ϵψξσ;if (ξ,ψ,σ)≠0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(μ−ℓ)ϵψξ;if σ=0;(ξ,ψ)≠0(1−e−ψ(μ−ℓ))(1−e−σ(μ−ℓ))(μ−ℓ)ϵσψ;if ξ=0;(σ,ψ)≠0(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))(μ−ℓ)ϵξσ;if ψ=0;(ξ,σ)≠0(1−e−ξ(μ−ℓ))(μ−ℓ)2ϵξ;if (σ,ψ)=0;ξ≠0(1−e−σ(μ−ℓ))(μ−ℓ)2ϵσ;if (ξ,ψ)=0;σ≠0(1−e−ψ(μ−ℓ))(μ−ℓ)2ϵψ;if (ξ,σ)=0;ψ≠0(μ−ℓ)3ϵ;if (ξ,σ,ψ)=0 |
with respect to ϰ∈[ℓ,μ].
Proof. Based on Theorem 2.2, let us choose
ψ(ϰ)=u″3(ϰ)+(u2+ξ1)u′3(ϰ)+(u22+ξ1u2+ξ2)u2(ϰ) |
by
ψ′(ϰ)=u‴3(ϰ)+(u2+ξ1)u″3(ϰ)+(u22+ξ1u2+ξ2)u′3(ϰ)+(u32+ξ1u22+ξ2u2+ξ3)u2(ϰ). |
Then
|ψ′(ϰ)−u2ψ(ϰ)−λ(ϰ)|=|u‴3(ϰ)+(u2+ξ1)u″3(ϰ)+(u22+ξ1u2+ξ2)u′3(ϰ) +(u32+ξ1u22+ξ2u2+ξ3)u3(ϰ)−u2(u″3(ϰ) +(u2+ξ1)u′3(ϰ)+(u22+ξ1u2+ξ2)u3(ϰ)−λ(ϰ)|=|u‴3(ϰ)+ξ1u″2(ϰ)+ξ2u′2(ϰ)+ξ3u+3(ϰ)−λ(ϰ)|≤ϵ |
with respect to ϰ∈[ℓ,μ]. As such, we have
|ψ′(ϰ)−u2ψ(ϰ)−λ(ϰ)|≤ϵ | (2.30) |
with respect to ϰ∈[ℓ,μ]. Equivalently, ψ fulfills
−ϵ≤ψ′(ϰ)−u2ψ(ϰ)−λ(ϰ)≤ϵ | (2.31) |
with respect to ϰ∈[ℓ,μ]. Multiplying the condition by the function e−u3(ϰ−ℓ)
−ϵe−u3(ϰ−ℓ)≤ψ′(ϰ)e−u3(ϰ−ℓ)−u2ψ(ϰ)e−u3(ϰ−ℓ)−λ(ϰ)e−u3(ϰ−ℓ)≤ϵe−u3(ϰ−ℓ) | (2.32) |
with respect to ϰ∈[ℓ,μ]. Without loss of generality, we accept that u3>1. Then
−u3ϵe−u3(ϰ−ℓ)≤ψ′(ϰ)e−u3(ϰ−ℓ)−u3ψ(ϰ)e−u3(ϰ−ℓ)−λ(ϰ)e−u3(ϰ−ℓ)≤ϵe−u3(ϰ−ℓ) | (2.33) |
with respect to ϰ∈[ℓ,μ]. Integrating 2.33 from ϰ to μ, we obtain
−ϵ(e−u3(ϰ−ℓ)−e−u3(μ−ℓ))≤e−u3(μ−ℓ)ψ(ℓ)−ψ(ϰ)e−u3(ϰ−ℓ)−∫μϰλ(s)e−u3(s−ℓ)ds≤ϵ(e−u3(ϰ−ℓ)−e−u3(μ−ℓ)) | (2.34) |
with respect to ϰ∈[ℓ,μ]. Based on 2.34, we obtain
−ϵe−u3(ϰ−ℓ)≤e−u3(μ−ℓ)ψ(ℓ)−ϵe−u3(μ−ℓ)−ψ(ϰ)e−u3(ϰ−ℓ)−∫μϰλ(s)e−u3(s−ℓ)ds≤ϵe−u3(ϰ−ℓ) | (2.35) |
with respect to ϰ∈[ℓ,μ]. Again, multiplying the condition by function e−u3(ϰ−ℓ) yields
−ϵ≤e−u3(μ−ℓ)ψ(ℓ)−ϵe−u3(μ−ϰ)−ψ(ϰ)−∫μϰλ(s)e−u3(s−ℓ)ds≤ϵ | (2.36) |
with respect to ϰ∈[ℓ,μ]. Based on 2.36, we have
−ϵ≤e−u3(ϰ−μ)ψ(ℓ)−ϵe−u3(μ−ℓ)−ψ(ϰ)−eu3ϰ∫μϰλ(s)e−u3(s−ℓ)ds≤ϵ | (2.37) |
for all ϰ∈[ℓ,μ]. Let u2(ϰ)=ψ(μ)e−u3(ϰ−μ)−eu3ϰ∫μϰλ(s)e−u3(s−ℓ)ds, then u′2(ϰ)−u3u2(ϰ)−λ(ϰ)=0 by u′2(ϰ)=u3u2(ϰ)+λ(ϰ), for all ϰ∈[ℓ,μ]. Therefore
|u2(ϰ)−ψ(ϰ)|=|ψ(μ)e−u3(ϰ−μ)−ψ(ϰ)−eu3ϰ∫μϰλ(s)e−u3(s−ℓ)ds|≤eσϰ∫μϰe−σs|ψ′(s)−u3ψ(s)−λ(s)|ds|u2(ϰ)−ψ(ϰ)|≤ϵeσϰ∫μϰe−σsds | (2.38) |
with respect to ϰ∈[ℓ,μ]. If σ≠0, then
|u2(ϰ)−ψ(ϰ)|≤ϵσ(1−e−σ(μ−ϰ))≤ϵσ(1−e−σ(μ−ℓ)) | (2.39) |
with respect to ϰ∈[ℓ,μ]. If σ=0, then
|u2(ϰ)−ψ(ϰ)|≤ϵeσϰ∫μϰe−σsds≤ϵ(μ−ϰ)≤ϵ(μ−ℓ) | (2.40) |
with respect to ϰ∈[ℓ,μ]. Based on 2.40, we obtain
|u(ϰ)−ψ(ϰ)|≤T, where
T={(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ψξσ;if(ξ,ψ,σ)≠0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(μ−ℓ)ψξ;ifσ=0;(ξ,ψ)≠0(1−e−ψ(μ−ℓ))(1−e−σ(μ−ℓ))(μ−ℓ)σψ;ifξ=0;(σ,ψ)≠0(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))(μ−ℓ)ξσ;ifψ=0;(ξ,σ)≠0(1−e−ξ(μ−ℓ))(μ−ℓ)2ξ;if(σ,ψ)=0;ξ≠0(1−e−σ(μ−ℓ))(μ−ℓ)2σ;if(ξ,ψ)=0;σ≠0(1−e−ψ(μ−ℓ))(μ−ℓ)2ψ;if(ξ,σ)=0;ψ≠0(μ−ℓ)3;if(ξ,σ,ψ)=0 | (2.41) |
with respect to ϰ∈[ℓ,μ].
Theorem 2.4. The differential equation ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)=Ψ(ϰ) has the Hyers Ulam stability, where ψ∈c4[ℓ,μ] and with respect to ϰ∈[ℓ,μ], as such
|Ψ(ϰ)−ζ(ϰ)|≤Θ, where
Θ={(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))(1−e−ν(μ−ℓ))ψξσνϵ;if (ξ,ψ,σ,ν)≠0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ψξσ(μ−ℓ)ϵ;if ξ≠ψ≠σ≠0,ν=0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ψξν(μ−ℓ)ϵ;if ξ≠ψ≠ν≠0,σ=0(1−e−ψ(μ−ℓ))(1−e−ν(μ−ℓ))(1−e−σ(μ−ℓ))ψνσ(μ−ℓ)ϵ;if ν≠ψ≠σ≠0,ξ=0(1−e−ν(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))νξσ(μ−ℓ)ϵ;if ξ≠ν≠σ≠0,ψ=0(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ξσ(μ−ℓ)2ϵ;if ξ≠σ≠0,ψ=ν=0(1−e−ξ(μ−ℓ))(1−e−ψ(μ−ℓ))ξσ(μ−ℓ)2ϵ;if ξ≠ψ≠0,σ=ν=0(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ξν(μ−ℓ)2ϵ;if ξ≠ν≠0,ψ=σ=0(1−e−σ(μ−ℓ))(1−e−ψ(μ−ℓ))σψ(μ−ℓ)2ϵ;if σ≠ψ≠0,ξ=ν=0(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ξν(μ−ℓ)2ϵ;if ξ≠ν≠0,ψ=σ=0(1−e−ψ(μ−ℓ))(1−e−ν(μ−ℓ))ψν(μ−ℓ)2ϵ;if ψ≠ν≠0,ξ=σ=0(1−e−ξ(μ−ℓ))ξ(μ−ℓ)3ϵ;if ξ≠0,σ=ψ=ν=0(1−e−ψ(μ−ℓ))ψ(μ−ℓ)3ϵ;if ψ≠0,σ=ξ=ν=0(1−e−σ(μ−ℓ))σ(μ−ℓ)3ϵ;if σ≠0,ξ=ψ=ν=0(1−e−ν(μ−ℓ))ν(μ−ℓ)3ϵ;if ν≠0,σ=ψ=ξ=0(μ−ℓ)4ϵ;if ξ=σ=ψ=ν=0 |
with respect to ϰ∈[ℓ,μ].
Proof. Similar to the proof of theorem 2.3, let ∈>0 and ψ∈c4[ℓ,μ].
Consider
ζ(ϰ)=ψ‴(ϰ)+(u2+ξ1)ψ″(ϰ)+(u22+ξ1u2+ξ2)ψ′(ϰ)+(u32+ξ1u22+ξ2u2+ξ3)ψ(ϰ), |
we obtain
ζ′(ϰ)=ψiv(ϰ)+(u2+ξ1)ψ‴(ϰ)+(u22+ξ1u2+ξ3)ψ″(ϰ)+(u32+ξ1u2+ξ2u2+ξ3)ψ′(ϰ)+(u42+ξ1u32+ξ2u22+ξ3u2+ξ4)ψ(ϰ) | (2.42) |
with respect to ϰ∈[ℓ,μ]. As such
|ζ′(ϰ)−u2ζ(ϰ)−H(ϰ)|<ϵ | (2.43) |
with respect to ϰ∈[ℓ,μ]. If follows from 2.42 that
|ζ′(ϰ)−u2ζ(ϰ)−H(ϰ)|=|ψiv(ϰ)+(u2+ξ1)ψ‴(ϰ)+(u22+ξ1u2+ξ3)ψ″(ϰ) +(u32+ξ1u2+ξ2u2+ξ3)ψ′(ϰ) +(u42+ξ1u32+ξ2u22+ξ3u2+ξ4)ψ(ψ) −u2(ψ‴(ϰ)+(u2+ξ1)ψ″(ϰ) +(u22+ξ1u2+ξ2)ψ′(ϰ) +(u32+ξ1u22+ξ2u2+ξ3)ψ(ϰ))−H(ϰ)|=|ψiv(ϰ)+ξ1ψ‴(ϰ)+ξ2ψ″(ϰ)+ξ3ψ′(ϰ)+ξ4ψ(ϰ)−H(ϰ)|≤ϵ. |
So
|ζ′(ϰ)−u2ζ(ϰ)−H(ϰ)|<ϵ |
for all ϰ∈[ℓ,μ]. Equivalently, ζ fulfills
−ϵ≤ζ′(ϰ)−u2ζ(ϰ)−H(ϰ)<ϵ | (2.44) |
with respect to ϰ∈[ℓ,μ]. Multiplying the formula by the function e−u2(ϰ−ℓ) satisfies
−ϵe−u2(ϰ−ℓ)≤ζ′(ϰ)e−u2(ϰ−ℓ)−u2ζ(ϰ)e−u2(ϰ−ℓ)−H(ϰ)e−u2(ϰ−ℓ) | (2.45) |
≤ϵe−u2(ϰ−ℓ) | (2.46) |
with respect to ϰϵ[ℓ,μ]. Without loss of generality, we accept that u2>1. As such
−ϵu2e−u2(ϰ−ℓ)≤ζ′(ϰ)e−u2(ϰ−ℓ)−u2ζ(ϰ)e−u2(ϰ−ℓ)−H(ϰ)e−u2(ϰ−ℓ)≤ϵu2e−u2(ϰ−ℓ) | (2.47) |
for all ϰ∈[ℓ,μ]. Integrating 2.45 from ϰ to μ. As such
−ϵ(e−u2(ϰ−ℓ)−e−u2(μ−ℓ))≤ζ(μ)e−u2(μ−ℓ)−ζ(ϰ)e−u2(ϰ−ℓ)−∫μϰH(s)e−u2(s−ℓ)ds≤ϵ(e−u2(ϰ−ℓ)−e−u2(μ−ℓ)) | (2.48) |
with respect to ϰ∈[ℓ,μ]. It follows from 2.48 that
−ϵ(e−u2(ϰ−ℓ))≤ζ(μ)e−u2(μ−ℓ)−ϵe−u2(μ−ℓ)−ζ(ϰ)e−u2(ϰ−ℓ)−∫μϰH(s)e−u2(s−ℓ)ds≤ϵ(e−u2(ϰ−ℓ)) | (2.49) |
for all ϰ∈[ℓ,μ]. Multiplying the formula by the function e−u2(ϰ−ℓ), we obtain
−ϵ≤ζ(μ)e−u2(ϰ−μ)−ϵe−u2(ϰ−μ)−ζ(ϰ)−eu2ϰ∫μϰH(s)e−u2(s−ℓ)ds≤ϵ | (2.50) |
with respect to ϰ∈[ℓ,μ].
Let Ψ(ϰ)=ζ(μ)e−u2(2H−eu2ϰ∫μϰH(s)e−u2(s−ℓ)ds. As such, Ψ(ϰ) satisfies Ψ′(ϰ)−u2Ψ(ϰ)−H(ϰ)=0 by
Ψ′(ϰ)=u2Ψ(ϰ)+H(ϰ) | (2.51) |
with respect to ϰ∈[ℓ,μ]. As such,
|Ψ(ϰ)−ζ(ϰ)|=|ζ(μ)e−u2(ϰ−μ)−ζ(ϰ)−eu2ϰ∫μϰH(s)e−u2sds|≤eνϰ|∫μϰ[e−u2sζ(s)]"ds−∫μϰH(s)e−u2sds|≤ϵeνϰ∫μϰe−νsds|Ψ(ϰ)−ζ(ϰ)|≤eνϰ∫μϰe−νsϵds | (2.52) |
with respect to ϰ∈[ℓ,μ]. If ν≠0, then
|Ψ(ϰ)−ζ(ϰ)|≤ϵν(1−e−ν(μ−ϰ)≤ϵν(1−e−ν(μ−ℓ) |
with respect to ϰ∈[ℓ,μ]. If ν=0, then
|Ψ(ϰ)−ζ(ϰ)|≤ϵ(μ−ϰ)≤ϵ(μ−ℓ) |
with respect to ϰ∈[ℓ,μ]. If follows from 2.41 that
|Ψ(ϰ)−ζ(ϰ)|≤Θ, where | (2.53) |
Θ={(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))(1−e−ν(μ−ℓ))ψξσνϵ;if (ξ,ψ,σ,ν)≠0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ψξσ(μ−ℓ)ϵ;if ξ≠ψ≠σ≠0,ν=0(1−e−ψ(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ψξν(μ−ℓ)ϵ;if ξ≠ψ≠ν≠0,σ=0(1−e−ψ(μ−ℓ))(1−e−ν(μ−ℓ))(1−e−σ(μ−ℓ))ψνσ(μ−ℓ)ϵ;if ν≠ψ≠σ≠0,ξ=0(1−e−ν(μ−ℓ))(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))νξσ(μ−ℓ)ϵ;if ξ≠ν≠σ≠0,ψ=0(1−e−ξ(μ−ℓ))(1−e−σ(μ−ℓ))ξσ(μ−ℓ)2ϵ;if ξ≠σ≠0,ψ=ν=0(1−e−ξ(μ−ℓ))(1−e−ψ(μ−ℓ))ξσ(μ−ℓ)2ϵ;if ξ≠ψ≠0,σ=ν=0(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ξν(μ−ℓ)2ϵ;if ξ≠ν≠0,ψ=σ=0(1−e−σ(μ−ℓ))(1−e−ψ(μ−ℓ))σψ(μ−ℓ)2ϵ;if σ≠ψ≠0,ξ=ν=0(1−e−ξ(μ−ℓ))(1−e−ν(μ−ℓ))ξν(μ−ℓ)2ϵ;if ξ≠ν≠0,ψ=σ=0(1−e−ψ(μ−ℓ))(1−e−ν(μ−ℓ))ψν(μ−ℓ)2ϵ;if ψ≠ν≠0,ξ=σ=0(1−e−ξ(μ−ℓ))ξ(μ−ℓ)3ϵ;if ξ≠0,σ=ψ=ν=0(1−e−ψ(μ−ℓ))ψ(μ−ℓ)3ϵ;if ψ≠0,σ=ξ=ν=0(1−e−σ(μ−ℓ))σ(μ−ℓ)3ϵ;if σ≠0,ξ=ψ=ν=0(1−e−ν(μ−ℓ))ν(μ−ℓ)3ϵ;if ν≠0,σ=ψ=ξ=0(μ−ℓ)4ϵ;if ξ=σ=ψ=ν=0 | (2.54) |
with respect to ϰ∈[ℓ,μ].
Two examples to illustrate the results in this study are provided, as follows.
Example 3.1. Consider a differential equation of the form σiv(ϰ)+2σ‴(ϰ)+σ″(ϰ)=Ψ(ϰ);ϰ∈[2,3].
Suppose ϵ>0, as such
|σiv(ϰ)+2σ‴(ϰ)+σ″(ϰ)−Ψ(ϰ)|≤ϵ. |
with respect to ϰ∈[2,3]. Suppose λ=1, then
g(ϰ)=σ‴(ϰ)+3σ″(ϰ)+4σ′(ϰ)+4σ(ϰ) andg′(ϰ)=σiv(ϰ)+3σ‴(ϰ)+4σ″(ϰ)+4σ′(ϰ)+4σ(ϰ) |
with respect to ϰ∈[2,3]. The conditions 2.16, 2.18 and 2.30 of Theorem 2.4 are satisfied. Therefore, there is a function ϰ∈c4[2,3], which is a mild solution of uiv(ϰ)+2u‴(ϰ)+u″(ϰ)=Ψ(ϰ) that is satisfied by 2.54.
Example 3.2. Consider a differential equation of the form σiv(ϰ)+σ‴(ϰ)+σ″(ϰ)=Ψ(ϰ);ϰ∈[3,2].
Suppose ϵ>0, and ψ∈[3,2], such that
|σiv(ϰ)+σ‴(ϰ)+σ″(ϰ)−Ψ(ϰ)|≤ϵ. |
with respect to ϰ∈[3,2]. We take
g(ϰ)=σ‴(ϰ)+2σ″(ϰ)+3σ′(ϰ)+3σ(ϰ) |
with respect to ϰ∈[3,2]. Then,
g′(ϰ)=σiv(ϰ)+2σ‴(ϰ)+3σ″(ϰ)+3σ′(ϰ)+3σ(ϰ) |
with respect to ϰ∈[3,2]. As such,
|g′(ϰ)−g(ϰ)−Ψ(ϰ)|=|σiv(ϰ)+σ‴(ϰ)+σ″(ϰ)−Ψ(ϰ)|≤ϵ |
with respect to ϰ∈[ℓ,μ]. The conditions 2.16, 2.18 and 2.30 of Theorem 2.4 are satisfied. Therefore, there is a function ϰ∈c4[3,2], which is a mild solution of uiv(ϰ)+u‴(ϰ)+u″(ϰ)=Ψ(ϰ) that is satisfied by 2.54.
We have investigated the Hyers-Ulam stability with respect to the linear differential condition of fourth order in this study. The effectiveness of the proposed method has been illustrated in the examples.
This research is made possible through financial support from the Phuket Rajabhat University, Thailand, and the Thailand Research Fund (RSA6280004). The authors are grateful to the Phuket Rajabhat University, Thailand, and the Thailand Research Fund (RSA6280004) for supporting this research. The authors are grateful to the referees for their valuable comments and suggestions.
The authors declares no conflict of interest.
[1] | S. M. Ulam, A collection of mathematical problems, New York, 29 (1960). |
[2] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Academy Sci. United States Am., 27 (1941), 222. doi: 10.1073/pnas.27.4.222
![]() |
[3] |
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Society, 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
![]() |
[4] |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Society Japan, 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
![]() |
[5] | C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373-380. |
[6] |
S. András, J. J. Kolumbán, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal.: Theory, Methods Appl., 82 (2013), 1-11. doi: 10.1016/j.na.2012.12.008
![]() |
[7] | S. András, A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., 219 (2013), 4853-4864. |
[8] |
M. Burger, N. Ozawa, A. Thom, On Ulam stability, Israel J. Math., 193 (2013), 109-129. doi: 10.1007/s11856-012-0050-z
![]() |
[9] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Academy Sci. United States Am., 27 (1941), 222. doi: 10.1073/pnas.27.4.222
![]() |
[10] | L. Cadariu, Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Univ. Vest Timisoara, Timisara, 2007. |
[11] |
D. S. Cimpean, D. Popa, Hyers-Ulam stability of Euler's equation, Appl. Math. Lett., 24 (2011), 1539-1543. doi: 10.1016/j.aml.2011.03.042
![]() |
[12] |
B. Hegyi, S. M. Jung, On the stability of Laplace's equation, Appl. Math. Lett., 26 (2013), 549-552. doi: 10.1016/j.aml.2012.12.014
![]() |
[13] |
Y. H. Lee, K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Analy. Appl., 238 (1999), 305-315. doi: 10.1006/jmaa.1999.6546
![]() |
[14] |
S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, ii, Appl. Math. Lett., 19 (2006), 854-858. doi: 10.1016/j.aml.2005.11.004
![]() |
[15] |
T. Miura, S. Miyajima, S. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Analy. Appl., 286 (2003), 136-146. doi: 10.1016/S0022-247X(03)00458-X
![]() |
[16] |
T. Miura, S. Takahasi, H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467-476. doi: 10.3836/tjm/1255958187
![]() |
[17] | T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jap., 55 (2002), 17-24. |
[18] |
S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach spacevalued differential equation y = λy, Bull. Korean Math. Soc., 39 (2002), 309-315. doi: 10.4134/BKMS.2002.39.2.309
![]() |
[19] |
S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl., 296 (2004), 403-409. doi: 10.1016/j.jmaa.2003.12.044
![]() |
[20] |
S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140. doi: 10.1016/j.aml.2003.11.004
![]() |
1. | Vediyappan Govindan, Porpattama Hammachukiattikul, Grienggrai Rajchakit, Nallappan Gunasekaran, R. Vadivel, Kottakkaran Sooppy Nisar, A New Approach to Hyers-Ulam Stability of r -Variable Quadratic Functional Equations, 2021, 2021, 2314-8888, 1, 10.1155/2021/6628733 | |
2. | Kamel Tablennehas, Zoubir Dahmani, Meriem Mansouria Belhamiti, Amira Abdelnebi, Mehmet Zeki Sarikaya, On a fractional problem of Lane–Emden type: Ulam type stabilities and numerical behaviors, 2021, 2021, 1687-1847, 10.1186/s13662-021-03483-w | |
3. | Naveed Ahmad Khan, Muhammad Sulaiman, Poom Kumam, Fawaz Khaled Alarfaj, Application of Legendre polynomials based neural networks for the analysis of heat and mass transfer of a non-Newtonian fluid in a porous channel, 2022, 2022, 2731-4235, 10.1186/s13662-022-03676-x | |
4. | Qiuxia Hu, Timilehin Gideon Shaba, Jihad Younis, Bilal Khan, Wali Khan Mashwani, Murat Çağlar, Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials, 2022, 30, 2769-0911, 501, 10.1080/27690911.2022.2088743 | |
5. | Douglas R. Anderson, Masakazu Onitsuka, Hyers–Ulam Stability for Differential Systems with $$2\times 2$$ Constant Coefficient Matrix, 2022, 77, 1422-6383, 10.1007/s00025-022-01671-y | |
6. | Aili Zhang, Human Computer Interaction System for Teacher-Student Interaction Model Using Machine Learning, 2022, 1044-7318, 1, 10.1080/10447318.2022.2115645 | |
7. | Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, Nadiyah Hussain Alharthi, Tianqing An, Qualitative Analyses of Fractional Integrodifferential Equations with a Variable Order under the Mittag-Leffler Power Law, 2022, 2022, 2314-8888, 1, 10.1155/2022/6387351 | |
8. | Mustafa Musa Jaber, Mohammed Hasan Ali, Sura Khalil Abd, Ali S. Abosinnee, R. Q. Malik, Simulation research on the collision between freight cars and expressway three-wave beam steel guardrail, 2023, 1380-7501, 10.1007/s11042-023-14374-5 | |
9. | Jeet Desai, Amol Marathe, Combined Homotopy and Galerkin Stability Analysis of Mathieu-Like Equations, 2023, 9, 2349-5103, 10.1007/s40819-022-01371-9 | |
10. | Muhammad Amer Latif, Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarsky’s mean with applications to means, 2021, 2021, 1687-1847, 10.1186/s13662-021-03517-3 | |
11. | Saima Akram, Allah Nawaz, Muhammad Bilal Riaz, Mariam Rehman, Periodic Solutions for Two Dimensional Quartic Non-Autonomous Differential Equation, 2022, 31, 1079-8587, 1467, 10.32604/iasc.2022.019767 | |
12. | Ravinder Kumar Sharma, Sumit Chandok, Bikash Koli Dey, Equivalence for Various Forms of Quadratic Functional Equations and Their Generalized Hyers–Ulam–Rassias Stability, 2023, 2023, 1687-0425, 1, 10.1155/2023/1721273 | |
13. | Jin Li, Xiaofang Xia, Chuanfang Zhang, Renlian Chen, Ulam Stability of Second-Order Periodic Linear Differential Equations with Periodic Damping, 2024, 16, 2073-8994, 1459, 10.3390/sym16111459 | |
14. | Bapin Mondal, Susmita Sarkar, Uttam Ghosh, A Study of a Prey-Generalist Predator System Considering Hunting Cooperation and Fear Effects Under Interval Uncertainty, 2023, 16, 1752-8909, 10.1142/S1752890923500010 | |
15. | Bakhtawar Pervaiz, Akbar Zada, Ioan‐Lucian Popa, Sana Ben Moussa, Hala H. Abd El‐Gawad, Analysis of fractional integro causal evolution impulsive systems on time scales, 2023, 46, 0170-4214, 15226, 10.1002/mma.9374 | |
16. | Huoxia Liu, Qigui Yang, Yujun Ju, Hyers‐Ulam Stability of Pseudo Almost Periodic Solutions for Distribution‐Dependent Equations, 2025, 0170-4214, 10.1002/mma.10864 |