Citation: Keyu Zhong, Qifang Luo, Yongquan Zhou, Ming Jiang. TLMPA: Teaching-learning-based Marine Predators algorithm[J]. AIMS Mathematics, 2021, 6(2): 1395-1442. doi: 10.3934/math.2021087
[1] | J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66-72. |
[2] | J. Kennedy, R. Eberhart, Particle swarm optimization, Perth, WA, Australia: Proceedings of IEEE International Conference on Neural Networks, 1995. |
[3] | R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341-359. |
[4] | K. V. Price, Differential evolution: A fast and simple numerical optimizer, Berkeley, CA, USA: Proceedings of North American Fuzzy Information Processing, 1996. |
[5] | D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459-471. |
[6] | C. R. Hwang, Simulated annealing: Theory and applications, Acta Appl. Math., 12 (1988), 108- 111. |
[7] | A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators algorithm: A natureinspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. |
[8] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. |
[9] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. |
[10] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163-191. |
[11] | R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303-315. |
[12] | D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. |
[13] | M. Liu, X. Yao, Y. Li, Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems, Appl. Soft Comput., 87 (2020), 105954. |
[14] | D. Tansui, A. Thammano, Hybrid nature-inspired optimization algorithm: Hydrozoan and sea turtle foraging algorithms for solving continuous optimization problems, IEEE Access, 8 (2020), 65780- 65800. |
[15] | H. Garg, A hybrid GSA-GA algorithm for constrained optimization problems, Inf. Sci., 478 (2019), 499-523. |
[16] | D. T. Le, D. K. Bui, T. D. Ngo, Q. H. Nguyen, H. Nguyen-Xuan, A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures, Comput. Struct., 212 (2019), 20-42. |
[17] | N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, et al., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069. |
[18] | F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, G. M. Viswanathan, Erratum: Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies, Phys. Rev. Lett., 89 (2002), 109902. |
[19] | M. A. A. Al-qaness, A. A. Ewees, H. Fan, L. Abualigah, M. A. Elaziz, Marine Predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea, Int. J. Environ. Res. Public Health, 17 (2020), 3520. |
[20] | D. Yousri, T. S. Babu, E. Beshr, M. B. Eteiba, D. Allam, A robust strategy based on marine predators algorithm for large scale photovoltaic array reconfiguration to mitigate the partial shading effect on the performance of PV system, IEEE Access, 8 (2020), 112407-112426. |
[21] | M. Abdel-Basset, R. Mohamed, M. Elhoseny, R. K. Chakrabortty, M. Ryan, A hybrid COVID- 19 detection model using an improved Marine Predators algorithm and a ranking-based diversity reduction strategy, IEEE Access, 8 (2020), 79521-79540. |
[22] | M. A. Elaziz, A. A. Ewees, D. Yousri, H. S. N. Alwerfali, Q. A. Awad, S. Lu, et al., An improved Marine Predators algorithm with fuzzy entropy for multi-level thresholding: Real world example of COVID-19 CT image segmentation, IEEE Access, 8 (2020), 125306-125330. |
[23] | R. V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teachinglearning-based optimization algorithm, Appl. Math. Modell., 37 (2013), 1147-1162. |
[24] | R. V. Rao, V. Patel, An improved Teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Sci. Iran., 20 (2013), 710-720. |
[25] | A. R. Yildiz, Optimization of multi-pass turning operations using hybrid teaching learning-based approach, Int. J. Adv. Manuf. Technol., 66 (2013), 1319-1326. |
[26] | K. Yu, X. Wang, Z. Wang, An improved Teaching-learning-based optimization algorithm for numerical and engineering optimization problems, J. Intell. Manuf., 27 (2016), 831-843. |
[27] | E. Uzlu, M. Kankal, A. Akpınar, T. Dede, Estimates of energy consumption in Turkey using neural networks with the Teaching-learning-based optimization algorithm, Energy, 75 (2014), 295-303. |
[28] | V. Toǧan, Design of planar steel frames using teaching-learning based optimization, Eng. Struct., 34 (2012), 225-232. |
[29] | R. V. Rao, V. D. Kalyankar, Parameter optimization of modern machining processes using teachinglearning-based optimization algorithm, Eng. Appl. Artif. Intell., 26 (2013), 524-531. |
[30] | M. Singh, B. K. Panigrahi, A. R. Abhyankar, S. Das, Optimal coordination of directional overcurrent relays using informative differential evolution algorithm, J. Comput. Sci., 5 (2014), 269-276. |
[31] | H. Bouchekara, M. A. Abido, M. Boucherma, Optimal power flow using Teaching-learning-based optimization technique, Electr. Power Syst. Res., 114 (2014), 49-59. |
[32] | G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, H. E. Stanley, Lévy flight search patterns of wandering albatrosses, Nature, 381 (1996), 413-415. |
[33] | J. D. Filmalter, L. Dagorn, P. D. Cowley, M. Taquet, First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean, Bull. Mar. Sci., 87 (2011), 325-337. |
[34] | E. Clark, Instrumental conditioning of lemon sharks, Science (New York, N.Y.), 130 (1959), 217-218. |
[35] | L. A. Dugatkin, D. S. Wilson, The prerequisites for strategic behaviour in bluegill sunfish, Lepomis macrochirus, Anim. Behav., 44 (1992), 223-230. |
[36] | V. Schluessel, H. Bleckmann, Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum), Zoology, 115 (2012), 346-353. |
[37] | D. W. Zimmerman, B. D. Zumbo, Relative power of the Wil-coxon test, the Friedman test, and repeated-measures ANOVA on ranks, J. Exp. Educ., 62 (1993), 75-86. |
[38] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163-191. |
[39] | C. A. C. Coello, E. M. Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16 (2002), 193-203. |
[40] | E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 179 (2009), 2232-2248. |
[41] | H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110 (2012), 151-166. |
[42] | R. A. Krohling, L. dos Santos Coelho, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics), 36 (2006), 1407-1416. |
[43] | K. M. Ragsdell, D. T. Phillips, Optimal design of a class of welded structures using geometric programming, J. Eng. Ind., 98 (1976), 1021-1025. |
[44] | P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math. Model., 40 (2016), 3951-3978. |
[45] | M. Dorigo, T. Stützle, Ant colony optimization: Overview and recent advances, 2Eds., Cham, Switzerland: Springer International Publishing, 2019. |
[46] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. |
[47] | S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. |
[48] | H. Beyer, H. Schwefel, Evolution strategies-A comprehensive introduction, Nat. Comput., 1 (2002), 3-52. |
[49] | R. Moghdani, K. Salimifard, Volleyball premier league algorithm, Appl. Soft Comput., 64 (2018), 161-185. |
[50] | H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10 (2010), 629-640. |
[51] | K. Thirugnanasambandam, S. Prakash, V. Subramanian, S. Pothula, V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Appl. Intell., 49 (2019), 2059-2083. |
[52] | K. Deb, GeneAS: A robust optimal design technique for mechanical component design, 2Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. |
[53] | M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567-1579. |
[54] | E. Mezura-Montes, C. A. C. Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, Sacramento, CA, USA: Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, 2003. |
[55] | T. Ray, P. Saini, Engineering design optimization using swarm with an intelligent information sharing among individuals, Eng. Optim., 33 (2001), 735-748. |
[56] | A. D. Belegundu, J. S. Arora, A study of mathematical programming methods for structural optimization. Part I: Theory, Int. J. Numer. Methods Eng., 21 (1985), 1583-1599. |
[57] | T. Ray, K. M. Liew, Society and civilization: An optimization algorithm based on the simulation of social behavior, IEEE Trans. Evol. Comput., 7 (2003), 386-396. |
[58] | Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu, P. Wang, et al., Chaos-induced and mutationdriven schemes boosting salp chains-inspired optimizers, IEEE Access, 7 (2019), 31243-31261. |
[59] | A. Kaveh, M. Khayatazad, A new meta-heuristic method: Ray optimization, Comput. Struct., 112 (2012), 283-294. |
[60] | F. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186 (2007), 340-356. |
[61] | E. M. Montes, C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443-473. |
[62] | S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228-249. |
[63] | J. S. Arora, Introduction to optimum design, New York: McGraw-Hill Book Co., 1989. |
[64] | A. A. Heidari, R. A. Abbaspour, A. R. Jordehi, An efficient chaotic water cycle algorithm for optimization tasks, Neural Comput. Appl., 28 (2017), 57-85. |
[65] | A. H. Gandomi, X. S. Yang, A. H. Alavi, S. Talatahari, Bat algorithm for constrained optimization tasks, Neural Comput. Appl., 22 (2013), 1239-1255. |
[66] | H. Rosenbrock, An automatic method for finding the greatest or least value of a function, Comput. J., 3 (1960), 175-184. |
[67] | L. dos Santos Coelho, Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37 (2010), 1676-1683. |
[68] | E. Mezura-Montes, C. A. C. Coello, A simple multimembered evolution strategy to solve constrained optimization problems, IEEE Trans. Evol. Comput., 9 (2005), 1-17. |
[69] | F. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186 (2007), 340-356. |
[70] | M. Montemurro, A. Vincenti, P. Vannucci, The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms, Comput. Methods Appl. Mech. Eng., 256 (2013), 70-87. |
[71] | K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA J., 29 (1991), 2013-2015. |
[72] | A. Kaveh, S. Talatahari, A novel heuristic optimization method: Charged system search, Acta Mech., 213 (2010), 267-289. |
[73] | B. K. Kannan, S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116 (1994), 405-411. |
[74] | C. Ozturk, E. Hancer, D. Karaboga, Dynamic clustering with improved binary artificial bee colony algorithm, Appl. Soft Comput., 28 (2015), 69-80. |
[75] | X. Kong, L. Gao, H. Ouyang, S. Li, A simplified binary harmony search algorithm for large scale 0-1 knapsack problems, Expert Syst. Appl., 42 (2015), 5337-5355. |
[76] | M. Abdel-Basset, D. El-Shahat, H. Faris, S. Mirjalili, A binary multi-verse optimizer for 0-1 multidimensional knapsack problems with application in interactive multimedia systems, Comput. Ind. Eng., 132 (2019), 187-206. |
[77] | P. Brucker, R. Qu, E. K. Burke, Personnel scheduling: Models and complexity, Eur. J. Oper. Res., 210 (2011), 467-473. |
[78] | M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Oper. Res., 35 (1987), 254-265. |
[79] | P. V. Laarhoven, E. Aarts, J. K. Lenstra, Job shop scheduling by simulated annealing, Oper. Res., 40 (1992), 113-125. |
[80] | J. Zhang, J. Zhang, T. Lok, M. R. Lyu, A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training, Appl. Math. Comput., 185 (2007), 1026-1037. |
[81] | K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training, Neural Comput. Appl., 16 (2007), 235-247. |
[82] | K. Y. Leong, A. Sitiol, K. S. M. Anbananthen, Enhance neural networks training using GA with chaos theory, 3Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. |
[83] | X. Wang, J. Yang, X. Teng, W. Xia, R. Jensen, Feature selection based on rough sets and particle swarm optimization, Pattern Recognit. Lett., 28 (2007), 459-471. |
[84] | M. Ghaemi, M. R. Feizi-Derakhshi, Feature selection using forest optimization algorithm, Pattern Recognit., 60 (2016), 121-129. |
[85] | P. R. Varma, V. V. Kumari, S. S. Kumar, Feature selection using relative fuzzy entropy and ant colony optimization applied to real-time intrusion detection system, Procedia Comput. Sci., 85 (2016), 503-510. |