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Abstract: Marine Predators algorithm (MPA) is a newly proposed nature-inspired metaheuristic
algorithm. The main inspiration of this algorithm is based on the extensive foraging strategies of
marine organisms, namely Lévy movement and Brownian movement, both of which are based on
random strategies. In this paper, we combine the marine predator algorithm with Teaching-learning-
based optimization algorithm, and propose a hybrid algorithm called Teaching-learning-based Marine
Predator algorithm (TLMPA). Teaching-learning-based optimization (TLBO) algorithm consists of
two phases: the teacher phase and the learner phase. Combining these two phases with the original
MPA enables the predators to obtain prey information for foraging by learning from teachers and
interactive learning, thus greatly increasing the encounter rate between predators and prey. In addition,
effective mutation and crossover strategies were added to increase the diversity of predators and
effectively avoid premature convergence. For performance evaluation TLMPA algorithm, it has
been applied to IEEE CEC-2017 benchmark functions and four engineering design problems. The
experimental results show that among the proposed TLMPA algorithm has the best comprehensive
performance and has more outstanding performance than other the state-of-the-art metaheuristic
algorithms in terms of the performance measures.

Keywords: Marine Predators algorithm; Teaching-learning-based optimization; mutation and
crossover; hybrid metaheuristic algorithm
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1. Introduction

In the past few decades, natural heuristic algorithms have shown superiority compared with
traditional optimization methods when solving complex nonlinear real-world problems. Natural
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heuristic algorithms solve a wide range of problems by simulating various natural phenomena. Some
of the most common and widely used natural heuristic algorithms are as follows: the genetic
algorithm (GA) [1] simulates the evolutionary process of biological population genetics, mutation and
natural selection. Particle swarm optimization (PSO) [2] simulates the predation behavior of birds in
nature. Differential evolution algorithm (DE) [3, 4] is derived from GA, but the former has special
crossover and selection methods. DE is a very powerful evolution algorithm, which has been widely
used in chemical engineering, electric power, mechanical design, control engineering, robotics, and
artificial neural networks, signal processing, data mining, biology, operations research, scheduling
problems and other fields. Artificial bee colony algorithm (ABC) [5] simulates the honey-collecting
behavior of bees. Simulated Annealing Algorithm (SA) [6] simulates the high temperature annealing
liquid crystallization process of metal materials. In recent years, some new and effective algorithms
have been proposed. For example, Marine Predator algorithm (MPA) [7] simulates the predatory
behavior of marine predators. Grey wolf optimizer (GWO) [8] simulates the grey wolf population
hierarchy and predation behavior in nature. Whale optimization algorithm (WOA) [9] simulates the
predation behavior of humpback whale groups in nature. Salp swarm algorithm (SSA) [10] simulates
the clustering and foraging behavior of salp swarm. The Teaching-learning-based optimization
(TLBO) [11] simulates the process of teacher’s work affecting learners.

In the natural heuristic algorithm, according to the principle of “no free lunch” [12], an algorithm
A shows a very ideal performance on a specific problem set, but there is always another set problem,
and algorithm A performs poorly on this problem set. Therefore, this theorem allows researchers to
constantly propose new algorithms or improve on existing algorithms. As for the improvement of
existing algorithms, the combination of two or more algorithms is a good strategy to realize the
algorithm blending by combining the excellent characteristics of various algorithms. In [13], a novel
hybrid whale optimization enhanced with Lévy flight and differential evolution algorithm was
presented to solve job shop scheduling problems. Tansui et al. [14] proposed a hybrid hydrozoa and
sea turtle foraging algorithms for solving continuous optimization problems. An effective hybrid
between gravitational search algorithm and genetic algorithm for constrained optimization problems
was introduced in [15]. Le et al. [16] proposed a novel hybrid electromagnetism-like algorithm with
firefly algorithm to solve discrete structural optimization. It is worth noting that, compared with the
original algorithm; the hybrid algorithm mentioned above has been proved to have higher efficiency.
In view of the effectiveness of the hybrid algorithm, this paper mixes the marine predator algorithm
with a Teaching-learning-based optimization algorithm to combine better exploration gains and
maintain a balanced efficiency between exploration and exploitation.

MPA is a new algorithm proposed by Faramarzi et al., which is inspired by the predation behavior
of marine predators, such as sharks, monitor lizards, sunfish, equine fishes and swordfish, etc. [17].
Marine Predators algorithm mainly consists of three phases. In phase 1, the prey moves faster than the
predator, the predator adopts Brownian movement as its predation strategy. Phase 2 is under the unit
speed ratio or when the predator and prey move at almost the same speed, the strategy adopted by the
predator is to carry out Lévy movement and Brownian movement simultaneously. Half of the
predators of the population carry out Lévy movement and the other half carry out Brownian
movement. In phase 3, the predator moves faster than the prey, the strategy adopted by the predator is
Lévy movement.

The MPA mainly imitates the Lévy movement and Brownian movement adopted by marine
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organisms during predation [18], both of which are based on random strategies, leading to certain
blindness of predators during predation. In this paper, the TLBO algorithm is combined with the
marine predator algorithm. Predators can utilize the knowledge gained from teacher and students’
self-study to hunt, which greatly improves the encounter rate between predators and prey and makes it
easier for predators to hunt prey.

Since the MPA was proposed, there have been some preliminary studies on the MPA. For example,
AI-Qaness et al. [19] used the Marine Predators algorithm to predict confirmed COVID-19 cases in
Italy, the US, Iran and South Korea. Dalia et al. [20] applied the marine predator algorithm to improve
the performance of photovoltaic system. Abdel-Basset et al. [21] proposed a hybrid detection model
of COVID-19 using an improved MPA and a sort-based diversity reduction strategy. Mohamed et
al. [22] used the improved MPA for image segmentation with multi-level threshold. Although the
MPA has many advantages, such as fewer parameters, simple setting, easy to implement and accurate
calculation, it also has some disadvantages, such as local optimization and premature convergence.
For the MPA, the hybrid of two or more algorithms is still a little work. In this paper, TLBO
algorithm is hybridized with the MPA, and the mutation and crossover strategy of differential
evolution is added, which greatly improves the performance of the basic MPA.

Teaching-learning-based optimization algorithm simulates the process of teacher’s teaching
influencing students’ learning. It was proposed by Rao et al. in 2011. The TLBO process is divided
into two parts: the first part is the teacher phase, in which students learn from the teacher; and the
second part is the learner phase, which is the interactive learning between learners. Due to the
effectiveness and interest of the TLBO algorithm, there are many related researches on its
improvement and application. For the improvement of the algorithm, Rao and Patel proposed
modified TLBO for solving for the multi-objective optimization of heat exchangers [23]. Rao and
Patel proposed improved TLBO for solving unconstrained optimization problems [24]. Yildiz
proposed a hybrid TLBO with Taguchi’s method for optimization problems of manufacturing
area [25]. In [26], a hybrid TLBO with differential evolution algorithm was presented to solve
numerical and engineering optimization problems. Uzlu et al. [27] proposed a hybrid ANN with
TLBO to estimate energy consumption in Turkey. For the application of TLBO algorithm, Toğan V
has utilized TLBO to optimize the design problem of planar steel frames [28]. In [29],
Teaching-learning-based optimization algorithm was applied for the process parameter optimization
of selected modern machining processes. The application of Teaching-learning-based optimization
algorithm for optimal coordination of DOCR relays in a looped power system was introduced in [30].
In [31], the teaching-learning based optimization technique was used to solve the optimal power flow
problem. Since the TLBO algorithm exhibits strong search performance in various applications, this
paper considers combining TLBO with MPA, Enhance the search performance of MPA through the
effective global search of TLBO.

Based on the characteristics of the MPA and TLBO algorithms, we propose a
Teaching-learning-based Marine Predator algorithm (TLMPA), which enables marine predators to
learn more intelligently in the process of predation, so as to obtain more location information of their
prey. The encounter rate between predators and prey has been greatly increased. The core idea of this
hybrid technology is to make full use of the good global search capability of TLBO and the fast
convergence capability of MPA. In addition, the cross mutation strategy of the differential evolution
algorithm is added to increase the diversity of the population, make up for the possible loss of
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diversity in TLBO, effectively avoid the phenomenon of premature convergence, and achieve a better
balance between algorithm exploration and development.

Major contributions of this paper can be summarized as follows:
1. A hybrid meta-heuristic algorithm using Teaching-learning-based optimization and Marine

Predators is proposed.
2. TLMPA combines the global optimization capability of TLBO and the fast convergence

capability of MPA. In addition, the cross mutation strategy of differential evolution is introduced,
which effectively avoids the occurrence of premature convergence and better balances the exploration
and exploitation capabilities.

3. In order to verify the effectiveness of TLMPA, 29 benchmark functions of IEEE CEC-2017 are
used in this paper to evaluate the search accuracy and statistical performance of the algorithm.

4. The TLMPA algorithm proposed in this paper has been used to solve four constrained
engineering optimization problems, such as: (a) welded beam design problem; (b) multi-plate disc
clutch brake design problem; (c) pressure vessel design problem; (d) tension/compression spring
design problem.

The rest of the paper is organized as follows: In Section 2, the overview of MPA and TLBO is
presented. Section 3 discusses the proposed TLMPA algorithm in detail. Simulation experiments and
result analysis are carried out in Section 4 and Section 5. In addition, Section 6 explains the limitations
of this research and future research. Finally, Section 7 is the conclusion of the paper.

2. Marine Predators and Teaching-learning-based optimization algorithm

2.1. Marine Predators algorithm (MPA)

The MPA is a new natural heuristic algorithm. The algorithm is inspired by the characteristics of
predators and prey in nature. In marine life, many species, including sharks, monitor lizards, sunfish,
equine fishes and swordfish; exhibit Lévy’s behavior in their search for prey [32]. Faramarzi et al.
proposed the Marine Predators algorithm (MPA). The initial solution of MPA is uniformly distributed
in the search space, just like the initialization steps of most meta-heuristic algorithms. The initialization
formula is as follows:

X0 = Xmin + rand (Xmax − Xmin). (1)

where Xmin and Xmax are the lower and upper limits of variables, and rand is a random vector between
0 and 1.

While the predator is looking for food, the prey is also looking for food. Therefore, two matrices
need to be defined. The fittest solution is nominated as a top predator to construct a matrix which is
called Elite, an array of which monitors the search and search for prey based on the location
information of the prey. The second matrix is the Prey matrix, which has the same dimension as Elite,
and the predator updates its position based on this matrix. The definition of Elite and Prey is as
follows:

Elite =


XI

11 XI
12 ... XI

1d
XI

21 X1
22 ... XI

2d
... ... ... ...

XI
n1 XI

n2 ... XI
nd

 (2)
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Prey =


X11 X12 ... X1d

X21 X22 ... X2d

... ... ... ...

Xn1 Xn2 ... Xnd

 (3)

where XI represents the optimal predator vector, n is the number of search agents and d is the number
of dimensions. Both predators and prey are considered search agents. And Xi, j is the jth dimension of
the ith Prey. The details of each step of the marine predator algorithm are as follows:

(1) Phase 1: High-velocity ratio or when the prey moves faster than the predator. This stage takes
place in the first 1/3 of the total number of iterations of the algorithm, during which the exploration of
the algorithm is performed. In this stage, the prey moves faster than the predator, so the predator
adopts a waiting strategy, monitoring the movement of the prey from the spot. The prey position
update formula is as follows:

S i = RB ⊗ (Elitei − RB ⊗ Pr eyi) , i = 1, ..., n (4)

Preyi = Preyi + P.R ⊗ S i (5)

where R ∈ [0, 1] is a random vector extracted from a uniform distribution, P = 0.5 is a constant
number, RB is a vector containing random numbers based on normal distribution representing the
Brownian movement, ⊗ is the multiplication of elements. S i represents the step size of ith prey’s next
move. The multiplication of RB by Prey simulates the Brownian movement of prey.

(2) Phase 2: In unit velocity ratio or when both predator and prey are moving at the same pace.
This phase occurs in the intermediate phase of the algorithm, when exploration begins to transform to
exploitation, and both exploration and exploitation are carried out. In this phase, the prey and the
predator move at almost the same speed, with the predator following the Brownian movement and the
prey following the Lévy movement. In this phase, both exploration and exploitation matters.
Consequently, half of the population is designated for exploration and the other half for exploitations.
In this phase, prey is responsible for exploitation and predator for exploration.

S i = RL ⊗ (Elitei − RL ⊗ Preyi) , i = 1, ..., n/2
Preyi = Preyi + P.R ⊗ S i

(6)

where RL refers to Levi’s movement and is a random number vector, and the multiplication of RL by
Prey simulates the Lévy movement of prey. Eq 6 is responsible for the first half of the exploration.
Eq 7 is responsible for the exploitation of the second half.

S i = RB ⊗ (RB ⊗ Elitei − Preyi) , i = n/2, ..., n
Preyi = Elitei + P.CF ⊗ S i

(7)

while CF =
(
1 − Iter

Max Iter

)(2 Iter
Max Iter ) is considered as an adaptive parameter to control the moving step

size of predators. The multiplication of RB by Elite simulates the Brownian movement of predators.
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(3) Phase 3: In low-velocity ratio or when predator is moving faster than prey. This phase occurs
in the last third of the total number of iterations of the algorithm and belongs to the final phase of the
algorithm. In this phase, the prey moves more slowly than the predator, and the predator’s strategy is
lévy movement. The predator location update formula is as follows:

S i = RL ⊗ (RL ⊗ Elitei − Preyi) , i = 1, ..., n
Preyi = Elitei + P.CF ⊗ S i

(8)

where the multiplication of RL and Elite simulates the Lévy movement of predators. S i represents the
step size of ith predator’s next move.

(4) Eddy formation and FADs’ effect
Environmental issues have a great influence on the predation of marine predators. For example, the

formation of eddy currents and the action of fish gathering devices (FADs) [33] will change the
predation behavior of predators. These effects can be expressed mathematically as:

Preyi =

{
Preyi + CF [Xmin + R ⊗ (Xmax − Xmin)] ⊗ U i f r ≤ FADs

Preyi + [FADs (1 − r) + r] (Preyr1 − Preyr2) i f r > FADs
(9)

where FADs = 0.2, U is the binary vector with arrays including zero and one. If the random solution is
less than 0.2, it is converted to 0, if the random solution is greater than 0.2, it is converted to 1, r ∈ [0, 1]
represents a random number, Xmin and Xmax are the vectors containing the lower and upper bounds of
the dimensions, r1 and r2 are random indices of the prey matrix. When r ≥ FADs, predators will take
a longer jump in different dimensions probably to find an environment with another prey distribution.
And when r > FADs, the predator will randomly move within the current predator space.

Algorithm 1: pseudo of MPA
1. Initialize search agents (Prey) populations
2. while termination criteria are not met
3. Calculate the fitness, construct the Elite matrix and accomplish memory saving
4. if Iter < Max Iter/3
5. Update prey based on Eq 4 and Eq 5
6. else if Max Iter/3 < Iter < 2 ∗ Max Iter/3
7. For the first half of the populations(i = 1, ..., n/2)
8. Update prey based on Eq 6
9. For the other half of the populations
10. Update prey based on Eq 7
11. else if Iter > 2 ∗ Max Iter/3
12. Update prey based on Eq 8
13. end if
14. Accomplish memory saving and Elite update
15. Applying FADs effect and update based on Eq 9
16. end while
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(5) Marine memory
Marine Predators have good memories to remind them of successful foraging places [34–36]. By

saving the optimal solution of the previous iteration, the current solution is compared with the historical
optimal solution, and if the current solution is more appropriate, the current solution is replaced. The
pseudo-code for the MPA is shown in Algorithm 1.

2.2. Teaching-learning-based optimization algorithm

Teaching and learning is an important process of individual growth. Empirical knowledge can be
acquired by learning from teachers or by learning through interaction between learners. Rao et al. [11]
proposed the Teaching-learning-based optimization algorithm based on this. This algorithm consists
of two important parts, namely teacher phase and learner phase, and two basic learning methods. In
the teacher phase, learners learn from the teacher. In the learning phase, learners interact with each
other. In TLBO, learners’ learning results are similar to fitness values, and teachers are considered to
be the best solution achieved so far. The algorithm is carried out by two basic operations in the
teacher phase and the learner phase. The algorithm steps are described in detail below.

1) Teacher phase
This phase is the initial phase of the algorithm, in which students improve their knowledge with

the help of the teacher, who is the most knowledgeable person in the class, and always motivates the
learners to acquire knowledge in this phase. Teachers try to use their anger to improve the subject
average of learners. Mi is assumed to be the subject average score of learners, and Ti is the teacher.
Teachers try to approach Mi towards their ability level, and the average score of learner changes with
the efforts of teachers, resulting in a new mean Mnew. Update the solution based on the difference
between the existing mean and the new mean. The mean difference is calculated as follows:

Diff Meani = ri (Mnew − TF Mi) (10)

where T F is the teaching factor that changes the mean value and the value can be 1 or 2, is a random
number between 0 and 1, Mi is the mean value of the learner, Mnew represents the best learner. To
update the solution according to the obtained mean difference, the update formula is as follows:

Xnew,i = Xold,i + Di f f Meani (11)

where Xnew,i is updated by Xold,i, if Xnew,i has a better fitness value, Xold,i will be replaced with Xnew,i.

2) Learner phase
In this phase, learners interact randomly with other learners through their interactions, such as

group discussions, demonstrations, formal communication, etc. If another learner has more
knowledge than he or she, then the learner will learn new knowledge. The expression updated by the
learner is as follows:

Xnew,i =

 Xold,i + ri

(
Xi − X j

)
i f f (Xi) < f

(
X j

)
Xold,i + ri

(
X j − Xi

)
i f f (Xi) > f

(
X j

) (12)
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Accept that if the Xnew,i result is better than the existing solution, i and j are the indexes of two
different learners, ri is a random value among (0, 1). The pseudo-code of TLBO algorithm is shown in
algorithm 2.

Algorithm 2: pseudo of TLBO
1. Initialize search agents (students) populations
2. Calculate the mean of each design variables
3. Identify the best solution(teacher)
4. while Iter < Max Iter
5. for i = 1 : n
6. Update the solution based on Eq 10 and Eq 11
7. Select the one with better fitness between the existing solution and the new solution
8. end for
9. for i = 1 : n
10. Update the solution based on Eq 12
11. Select the one with better fitness between the existing solution and the new solution
12. end for
13. end while

3. The proposed Teaching-learning-based Marine Predators algorithm

Marine creatures often adopt random foraging strategies when foraging. They have a good memory
to save their successful foraging position, which increases the chance of their next foraging success, but
this is only slightly increased the chance of success. In most cases, they tend to adopt a random foraging
strategy. The Teaching-learning-based Marine Predators algorithm proposed in this paper combines the
TLBO algorithm with the MPA, and adds the mutation and crossover strategies of differential evolution,
so that the marine predators can acquire more knowledge about the prey through continuous learning,
greatly increasing the encounter rate of marine predators and prey, greatly enhancing the success rate
of predation. Fusion of mutation and crossover strategies can avoid the phenomenon of premature
convergence of the algorithm.

In phase 1 of MPA, the marine predator follows Brownian movement. At this time, the predation
movement is irregular. In this phase, TLMPA combining the teaching phase of TLBO algorithm, the
predator obtains prey information by learning from the top predator. Because the top predator is always
more knowledgeable than the average predator, knowing where there are more prey. The top predators
always try to increase their average predation ability by moving the general predators towards their
own ability level. The mathematical model of phase 1 is as follows:

While Iter <
1
3

Max Iter

Diff Meani = RB (Mnew − TF Mi)
Preyi = Preyi + Diff Meani

(13)
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where Mi is assumed to be the subject average score of learners (predators), and Ti is the teacher
(top predator). TF is a teaching factor of 1 or 2. Mnew denotes the best learner. RB is a vector containing
random numbers based on normal distribution representing the Brownian movement.

In phase 2 of MPA, as mentioned earlier, half of the population follows Brownian movement. The
other half of the population follows the Lévy movement. In his phase, TLMPA is combined with the
teaching and learning phase of TLBO algorithm. The corresponding process of the proposed algorithm
is that half of the predators continue to learn from the top predators, and the other half of the predators
learn independently (after the first phase of learning, there is a certain knowledge base). This phase
completes the transition from learning to the top predators to autonomous learning. The mathematical
model of phase 2 is as follows:

While
1
3

Max Iter < Iter <
2
3

Max Iter

For the first half of population, i = 1,..., n/2

Preyi =

 Elitei + RL

(
Xi − X j

)
, i f f (Xi) < f (X j)

Elitei + RL

(
X j − Xi

)
, otherwise

For the second half of population, i = n/2,..., n
Diff Meani = RB (Mnew − TF Mi)
Preyi = Preyi + Diff Meani

(14)

where ri is a random value among (0,1), i and j are the indexes of two different learners. Preyi will
be accepted if it has a better fitness value. RL is a vector containing random numbers based on Lévy
distribution representing the Lévy movement.

In phase 3 of MPA, the marine predator follows the Lévy movement. In this phase, the TLMPA
combines the learner phase of the TLBO algorithm. After the previous phase, the predator completes
the conversion from learning to the top predators to autonomous learning. In phase 3, the predator will
perform completely autonomous learning. The mathematical model of phase 3 is as follows:

While Iter >
2
3

Max Iter

Preyi =

 Elitei + RL

(
Xi − X j

)
, i f f (Xi) < f (X j)

Elitei + RL

(
X j − Xi

)
, otherwise

(15)

where i , j, i and j are the indexes of two different learners. Preyi will be accepted if it has a better
fitness value.

This paper also combines the mutation and crossover strategies of differential evolution algorithm,
mainly to solve the loss of population diversity in the teacher phase or in the search process. When
the population converges to the local optimum of the objective function, when the initial algorithm
progresses slowly or does not proceed at all, or when the population loses diversity, premature
convergence occurs. Mutation and crossover are effective strategies to increase population diversity
and prevent premature convergence. The formula of mutation strategy is as follows:

Vi = Xr1 + F (Xr2 − Xr3) (16)

where r1, r2 and r3 are integers different from i randomly selected from 1 to n, i is the current individual,
which represents the number of individuals. The parameter F ∈ [0, 2] is the shrinkage factor, which
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is used to control the amplification of the differential vector Xr2 − Xr3. After the mutation phase is
completed, the crossover operation is performed on each predator and its corresponding mutant to
generate a test individual Ui, j =

(
Ui,1,Ui,2, ...,Ui,D

)
. The crossover formula is:

Ui, j =

{
Vi, j , i f r j ≤ CR or j = jrand

Xi, j , otherwise
(17)

where j = 1, 2...D, r j ∈ (0, 1) are uniformly distributed random numbers generated for each j.
CR ∈ (0, 1) is the crossover probability parameter, jrand ∈ (1, 2. . .D) is a randomly selected dimension
indicator. Figure 1 describes the flow chart of the proposed algorithm, and Algorithm 3 gives the
pseudo-code for TLMPA.

Algorithm 3: pseudo of TLMPA
1. Initialize search agents (Prey) populations
2. Define parameters such as P, TF , CF, FADs, F,CR
3. while Iter < Max Iter
4. Calculate the fitness, construct the Elite matrix and accomplish memory saving
5. Calculate the mean of each design variables
6. Select the best solution as top predator
7. if Iter < Max Iter/3
8. for i = 1 : n
9. Update prey based on Eq 13
10. end for
11. else if Max iter/3 < Iter < 2 ∗ Max Iter/3
12. for i = 1 : n
13. Update prey based on Eq 14
14. end for
15. else if Iter > 2 ∗ Max Iter/3
16. for i = 1 : n
17. Update prey based on Eq 15
18. end for
19. end if
20. Execute the process of mutation and crossover based on Eq 16 and Eq 17
21. Evaluate the fitness of prey and corresponding trial vector
22. Update the current best solution
23. Accomplish memory saving and Elite update
24. Applying FADs effect and update based on Eq 9
25. end while
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Figure 1. Flowchart of the proposed algorithm.
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Complexity analysis

In order to better understand the algorithm process proposed in this article, in this section we analyze
the time complexity and space complexity of the proposed algorithm. The analysis of time complexity
is as follows:

In steps 1 and 2, initializing the population and setting the parameters requires O(n ∗ d), where n is
the population number and d is the dimension of the problem. In Steps 4–6, it takes O(n); steps 7–10,
steps 11–14 and steps 15–19 correspond to the three stages of the algorithm, and they need O(n ∗d); In
steps 20, it costs O(n ∗ d); in steps 21–24, it costs O(n); in addition, the outermost loop requires O(t),
where t is the number of iterations. Finally, the time complexity of TLMPA is O(t ∗ n ∗ d).

Next, the space complexity of the proposed algorithm is discussed. Because the size of Elite matrix
and prey matrix required in the algorithm are both n ∗ d, and this is also the maximum space required
by the algorithm. Finally, the space complexity of TLMPA is O(n ∗ d).

4. Experimental results and analysis

In order to verify the effectiveness of the proposed algorithm, this paper uses the IEEE CEC-2017
benchmark test set for testing. The CEC2017 contains 29 benchmark functions for evaluating
optimization problems. These functions can be divided into four categories: unimodal function,
multimodal function, mixed function and combined function, as shown in Table 1. The unimodal
function has only one global optimal point, which is used to evaluate the exploitation ability of the
meta-heuristic algorithm. The simple multimodal function has multiple local optima, which is used to
evaluate the balance between exploitation and exploration and avoid falling into local optima. In the
hybrid function, the variable is randomly divided into several subcomponents, and then different basic
functions are used for different subcomponents. The composition function better integrates the
properties of the sub-functions and maintains the continuity of the global/local optimal solution.

4.1. Compared with the well-known natural heuristic algorithm

The algorithm was implemented in MATLAB R2017b, and experiments were conducted on a PC
with 2.4 GHz, Inter(R) Core(TM) i5 CPU, 64-bit system type, and windows7 operating system. In
order to improve reliability and produce statistically significant results, in this verification test, the
population size of all algorithms is set to 20. It should be noted that each method is run for 30 times,
the maximum number of function calculations is 50000. Each function was run 30 times, and the
average and standard deviation of the proposed algorithm and other algorithms were recorded. The
initial parameter setting of each algorithm is shown in Table 2.
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Table 1. IEEE CEC-2017 benchmark problems.
ID Name of the function Class Range Optimum
F1 Shifted and rotated bent cigar function Unimodal [-100,100] 100
F3 Shifted and rotated Zakharov function Unimodal [-100,100] 300
F4 Shifted and rotated Rosenbrock’s function Multimodal [-100,100] 400
F5 Shifted and rotated Rastrigin’s function Multimodal [-100,100] 500
F6 Shifted and rotated expanded Scaffer’s F6 function Multimodal [-100,100] 600
F7 Shifted and rotated Lunacek bi-Rastrigin function Multimodal [-100,100] 700
F8 Shifted and rotated non-continuous Rastrigin’s function Multimodal [-100,100] 800
F9 Shifted and rotated Lévy function Multimodal [-100,100] 900
F10 Shifted and rotated Schwefel’s function Multimodal [-100,100] 1000
F11 Hybrid function 1 (N = 3) Hybrid [-100,100] 1100
F12 Hybrid function 2 (N = 3) Hybrid [-100,100] 1200
F13 Hybrid function 3 (N = 3) Hybrid [-100,100] 1300
F14 Hybrid function 4 (N = 4) Hybrid [-100,100] 1400
F15 Hybrid function 5 (N = 4) Hybrid [-100,100] 1500
F16 Hybrid function 6 (N = 4) Hybrid [-100,100] 1600
F17 Hybrid function 6 (N = 5) Hybrid [-100,100] 1700
F18 Hybrid function 6 (N = 5) Hybrid [-100,100] 1800
F19 Hybrid function 6 (N = 5) Hybrid [-100,100] 1900
F20 Hybrid function 6 (N = 6) Hybrid [-100,100] 2000
F21 Composition function 1 (N = 3) Composition [-100,100] 2100
F22 Composition function 2 (N = 3) Composition [-100,100] 2200
F23 Composition function 3 (N = 4) Composition [-100,100] 2300
F24 Composition function 4 (N = 4) Composition [-100,100] 2400
F25 Composition function 5 (N = 5) Composition [-100,100] 2500
F26 Composition function 6 (N = 5) Composition [-100,100] 2600
F27 Composition function 7 (N = 6) Composition [-100,100] 2700
F28 Composition function 8 (N = 6) Composition [-100,100] 2800
F29 Composition function 9 (N = 3) Composition [-100,100] 2900
F30 Composition function 10 (N = 3) Composition [-100,100] 3000

Table 2. Initial parameters for the meta-heuristic algorithms.
Algorithm Parameter Value

PSO Topology Fully connected
Cognitive and social constant (C1, C2) 2, 2

Inertia weight linear reduction from 0.9 to 0.1
Velocity limit 10% of the dimension range

SSA Leader position update probability 0.5
LSHADE-cnEpSin H, NPmin, Pbest rate, Arc rate, ps, pc 5, 4, 0.11, 1.4, 0.5, 0.4

GWO a Linear reduction from 2 to 0
DE betamin, betamax, pCR 0.2, 0.8, 0.2

TLBO Teaching factor TF , SearchAgent no 1 or 2, 20
MPA FADs, P, SearchAgent no 0.2, 0.5, 20

TLMPA FADs, P, betamin, betamax, pCR 0.2, 0.5, 0.2, 0.8, 0.2
Teaching factor TF , SearchAgent no 1 or 2, 20

Compare TLMPA with seven natural heuristic algorithms, including marine predator algorithm
(MPA), particle swarm algorithm (PSO), differential evolution algorithm (DE), salp swarm algorithm
(SSA), LSHADE-cnEpSin, grey wolf optimizer (GWO), Teaching-learning-based optimization
algorithm (TLBO). The results show that the proposed TLMPA has better search efficiency in
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searching for the optimal solution of the problem. For the rest of this section, this paper will show the
experimental results according to the four different types of functions of CEC2017.

4.1.1. Test on 10 dimensions

This section introduces the results of testing on the 10-dimensional problem of the CEC2017
benchmark function. Tables 3–6 respectively show the test results of the unimodal function,
multimodal function, hybrid function and composition function. Figures 2 and 3 show the
convergence curves of unimodal function tests; Figures 4–7 show the convergence curves of
multimodal function tests; Figures 8–13 and Figures 14–19 show the convergence curves of hybrid
functions and composition functions, respectively.

(1) Test results using unimodal functions (F1, F3)
The experimental results in Table 3 show that the proposed algorithm performs well on the

unimodal test function and can find the optimal solution on both functions. It should be noted that the
numbers in bold indicate the relative best values of the compared algorithms. The unimodal function
mainly evaluates the exploitation ability of the algorithm. It can be seen from the data in the table that
the proposed algorithm has strong exploitation capabilities. As one of the winners of the CEC2017
competition, the LSHADE-cnEpSin algorithm has excellent performance on unimodal functions, and
it can also find the optimal solution. In these two functions, the proposed algorithm is comparable to
LSHADE-cnEpSin. Among other algorithms, GWO and SSA have the worst performance, and the
experimental results are far from the optimal value. In F1, DE has reached the optimal value in 30
experiments, but the overall result is still much worse than the optimal value; in the F3 function, DE
performs slightly better, closer to the optimal value of 300. The worst value of MPA in the F1 function
is far greater than the optimal value; in the F3 function, the performance is slightly more stable, and
the result is closer to the optimal value. In general, from the experimental results in the unimodal
function, the search performance of TLMPA is excellent and it has strong exploitation capabilities.

Table 3. Results of unimodal benchmark functions (D=10).
Functions Algorithms Best Mean Worst Std.

F1

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

100.00
100.00

3.10E+07
100.00

4.00E+07
103.30
181.85
100.00

100.00
181.08

1.76E+08
1112.12

8.80E+07
2383.37

1.74E+04
100.00

100.00
886.43

6.55E+08
4663.78

1.53E+08
7692.03

1.80E+05
100.00

0.00
206.44

1.64E+08
1266.62

3.35E+07
2483.15

3.47E+04
0.00

F3

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

300.00
300.00
403.71
300.35
412.29
300.00
300.00
300.00

300.00
300.04
2819.93
339.70
629.16
300.00
300.00
300.00

300.00
301.06

8565.43
480.99

1015.42
300.00
300.00
300.00

0.00
0.19

2616.18
55.66

166.55
0.00
0.00
0.00
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Figures 2 and 3 are the convergence graphs of TLMPA, MPA, GWO, DE, SSA, TLBO, PSO, and
LSHADE-cnEpSin on the unimodal function. It can be seen from these figures that the convergence
speed of TLMPA is faster than other algorithms. Among other algorithms, the search performance of
DE is better than that of several other peer algorithms, but compared with TLMPA, TLMPA performs
significantly better. The performance of LSHADE-cnEpSin in Figures 2 and 3 is quite stable, with
high convergence ability. The convergence speed and accuracy of TLMPA on the unimodal function
are equivalent to it. Through the analysis of the convergence curves shown in Figures 2 and 3, it is
further proved that TLMPA can effectively find the optimal solution of the unimodal test function,
which fully reflects its superior search performance.

Figure 2. D=10, convergence cure for F1. Figure 3. D=10, convergence cure for F3.

(2) Test results using multimodal functions (F4–F10)
Table 4 shows the experimental results of TLMPA and other comparison algorithms on multimodal

functions. From the experimental results in the table, TLMPA does not perform the best on F4, F5,
F7, F8 and F10, but it ranks in the top three in most functions. In F4, the performance of TLMPA
is second only to the LSHADE-cnEpSin algorithm. It can find the theoretical optimal value, and its
standard deviation is close to 0, and the mean and worst values are also very close to the global optimal
value. In F5 and F7, none of the algorithms found the optimal value. Among them, the closest to the
optimal value is the LSHADE-cnEpSin algorithm, followed by DE, and third is TLMPA. Although
TLMPA does not perform the best, its result value is already very close to the optimal value, and its
standard deviation is relatively small among all algorithms, which is better than the results of other
peer algorithms, which also shows the performance of the TLMPA algorithm is stable. In F6 and F9,
TLMPA performed very well, tied for first place with DE and LSHADE-cnEpSin, and they were able
to find the global optimal value. On the whole, TLMPA is more effective in optimizing multimodal
function problems, has a higher global search capability, and the balance between exploitation and
exploration capabilities is better than most of the comparison algorithms.

Figures 4–7 are the convergence curves obtained by testing on the multimodal function. It can
be seen from Figure 4 and Figure 7 that the convergence curves of TLMPA and other algorithms are
similar, because all algorithms in F4 can find solutions that are closer to the optimal value. In Figure 7,
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in addition to GWO and SSA, other algorithms can converge to a position close to the optimal solution.
It can be seen from Figure 5 that TLMPA is second only to LSHADE-cnEpSin and DE by a small gap.
Figure 6 shows that TLMPA has a faster convergence speed than other algorithms. In general, TLMPA
shows higher convergence ability than most of the compared algorithms, reflecting its better search
performance.

Figure 4. D=10, convergence cure for F4. Figure 5. D=10, convergence cure for F5.

Figure 6. D=10, convergence cure for F6. Figure 7. D=10, convergence cure for F9.
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Table 4. Results of multimodal benchmark functions (D=10).

Functions Algorithms Best Mean Worst Std.

F4

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

400.00
400.00
409.23
401.73
407.09
400.93
400.02
400.00

400.03
400.73
422.67
405.59
414.79
403.15
401.96
400.00

400.29
404.80
468.96
407.12
471.19
406.47
406.83
400.00

0.06
1.33

17.84
1.08

12.06
1.27
1.91
0.00

F5

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

506.40
502.17
517.35
503.05
526.68
504.97
503.98
501.99

510.58
512.82
529.62
506.69
538.27
516.41
515.55
505.74

515.83
520.84
541.60
511.63
553.03
538.80
533.83
513.93

2.58
4.14
5.75
1.82
6.85
8.16
7.78
2.65

F6

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

600.00
600.05
605.03
600.00
604.70
600.00
600.00
600.00

600.00
600.29
607.83
600.00
610.36
601.16
600.56
600.00

600.00
601.00
611.10
600.00
624.39
608.16
602.61
600.00

0.00
0.27
1.72
0.00
4.83
1.69
0.88
0.00

F7

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

716.60
719.25
733.90
714.27
738.77
712.25
707.47
703.65

723.63
731.79
747.24
717.85
761.54
725.02
724.59
715.73

730.66
744.21
767.57
722.69
781.48
745.14
740.95
722.96

3.08
6.33
8.37
1.98

10.86
7.81
7.42
3.56

F8

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

803.94
804.02
814.99
802.84
823.92
803.98
805.97
801.00

811.56
811.50
822.16
807.04
840.11
811.76
817.64
806.16

820.75
817.80
836.37
810.95
851.18
825.39
840.79
819.90

3.72
3.14
5.35
2.05
7.07
5.21
8.59
3.66

F9

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

900.00
900.00
903.58
900.00
913.76
900.00
900.00
900.00

900.00
900.24
930.09
900.00
945.59
907.35
902.93
900.00

900.00
901.92
1176.72
900.00
1168.28
932.36
918.41
900.00

0.00
0.40

50.32
0.00

46.63
8.76
4.46
0.00

F10

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1394.27
1238.73
1229.25
1126.12
1817.99
1003.54
1242.01
1007.02

1613.14
1605.54
1805.08
1295.65
2229.12
1553.23
1613.81
1239.08

1784.97
1886.28
2380.15
1566.73
2768.07
2253.07
2004.14
1601.76

113.19
157.58
281.31
104.27
205.49
297.66
203.03
133.49
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(3) Test results using hybrid functions (F11–F20)
Table 5 shows the test results of TLMPA and other algorithms in the hybrid functions. As can be

seen from the data in the table, TLMPA did not get the best results in F11, F13, F16, F17 and F18, but
it was always among the top three algorithms, and the results of TLMPA in these functions were very
close to the theoretical optimal value. In F14, F15, F19 and F20, the performance of TLMPA is the
best among all algorithms, and the average value is smaller than LSHADE-cnEpSin. In summary, the
performance of TLMPA in the hybrid function is slightly inferior to the LSHADE-cnEpSin algorithm,
but compared to other algorithms, TLMPA still has a strong search performance.

Figures 8–13 illustrate the convergence of the optimization process using the hybrid functions. In
Figure 9, Figure 10 and Figure 13, TLMPA has the best convergence speed and accuracy. In Figure
8, the convergence of TLMPA is similar to that of MPA and LSAHDE-cnEpSin, and both have good
search performance. Although the final result of TLMPA in Figure 11 is not the best, it is also very
close to the optimal value. In general, TLMPA performs well in mixed functions, and compared with
most of the comparison algorithms, it can effectively search for the optimal solution.

From the F21, F22, F26 and F28 in the table, it can be seen that TLMPA can find the optimal value
in these functions, although some of its mean and minimum values are not optimal or the best among
all comparison algorithms. However, in F22, F27, F28, and F30, the mean value of TLMPA is the
closest to the optimal value among all algorithms. From this point of view, its search performance
is better than other algorithms. Among F21, F24, F25 and F26, TLMPA is not the best performing
algorithm, but the best value it finds is the smallest among all algorithms. In F23 and F29, TLMPA
did not get very good results, but in terms of results, it is not much different from those algorithms that
have better results.

(4) Test results using composition functions (F21–F30)
Table 6 shows the experimental result data obtained by testing in the composition functions. On the

whole, the performance of TLMPA in the composition functions is one of the best in the comparison
algorithm, and it can effectively search for the optimal solution or the approximate optimal solution.
Figures 14–19 are the convergence curves obtained by testing in the composition functions. Figure
14, Figure 16, Figure 17, and Figure 19 show that the convergence speed and accuracy of TLMPA
are better than most comparison algorithms. The convergence of each algorithm in Figure 15 is very
similar, which is mainly because the result values found by each algorithm are very close. In Figure 18,
the performance of TLMPA is not very good, but it is not so bad, and it is still competitive compared
with the other algorithms. But in terms of overall performance, TLMPA is an excellent algorithm,
compared with other algorithms, it has high search performance.
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Table 5. Results of hybrid benchmark functions (D=10).
Functions Algorithms Best Mean Worst Std.

F11

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1100.58
1100.51
1118.42
1100.13
1132.40
1102.99
1101.01
1100.00

1102.51
1103.31
1143.13
1102.04
1168.07
1125.18
1112.36
1100.76

1104.56
1106.86
1191.94
1104.05
1250.69
1192.53
1143.79
1102.98

1.08
1.47
15.53
1.08
28.49
20.87
8.82
0.97

F12

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1206.20
1200.33

2.39E+05
1.56E+04
1.19E+06
3068.00
1919.17
1318.65

1310.64
1301.26

2.22E+06
4.30E+04
7.08E+06
1.32E+04
3.29E+04
1332.72

1589.51
1476.00

8.77E+06
1.04E+05
1.44E+07
5.45E+04
1.14E+05
1492.57

95.32
71.26

1.96E+06
2.33E+04
4.11E+06
1.26E+04
3.35E+04

77.40

F13

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1306.49
1302.78
3278.40
1307.14
3331.90
1712.00
1312.88
1301.97

1309.72
1308.89

1.46E+04
2845.93

2.63E+04
5375.69

1.87E+04
1303.91

1315.79
1314.36

4.18E+04
1.11E+04
1.01E+05
1.48E+04
6.82E+04
1315.57

2.36
2.54

8437.26
2551.30

2.09E+04
3688.28

1.90E+04
3.12

F14

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1400.19
1401.19
1457.84
1400.14
1461.45
1428.11
1430.59
1409.95

1402.71
1404.44
2309.90
1535.10
1525.63
1446.34
2318.41
1421.96

1408.59
1413.91
5178.96
2188.66
1674.09
1516.29

15986.26
1425.98

1.88
3.30

1419.00
232.73
43.44
18.97

2710.74
6.95

F15

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1500.27
1500.18
1569.15
1500.19
1664.41
1525.19
1545.76
1503.02

1500.76
1501.07
3852.43
2174.62
2017.68
1587.36
8079.85
1513.38

1501.58
1503.73
8049.74

14418.27
3158.44
1938.48

50681.18
1517.93

0.36
0.70

1960.74
2355.72
346.14
75.97

11463.48
5.09

F16

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1600.77
1601.16
1625.10
1600.23
1612.25
1601.29
1600.67
1600.00

1604.45
1603.13
1764.13
1607.66
1688.94
1672.82
1691.89
1601.31

1623.75
1607.06
2152.77
1719.05
1797.46
1949.35
1855.82
1605.58

4.61
1.32

133.20
22.54
62.46
85.75
84.86
1.23

F17

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1700.49
1712.14
1740.23
1700.00
1739.25
1711.90
1706.96
1700.00

1706.29
1731.88
1763.80
1703.31
1775.41
1747.67
1769.63
1702.95

1720.46
1742.95
1876.61
1728.68
1854.68
1766.82
1941.29
1707.80

4.82
8.21
25.53
7.01
23.72
12.93
57.57
1.82

F18

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1800.49
1800.12

1.41E+04
1800.62
6199.50
2367.16
2334.33
1810.03

1801.47
1801.25

4.43E+04
2616.51

2.91E+04
6848.11

2.61E+04
1818.03

1809.13
1803.55

1.14E+05
9075.50

6.28E+04
2.30E+04
1.91E+05
1837.01

1.65
0.92

1.77E+04
1574.95

1.75E+04
4908.72

3.53E+04
7.20

F19

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1900.03
1900.29
1953.81
1900.05
1943.04
1908.68
1902.38
1900.00

1900.45
1901.24
4994.66
2004.07
2290.12
1955.57
7460.92
1905.21

1901.85
1902.58

1.43E+04
2534.12
4196.77
2079.30

3.11E+04
1906.15

0.47
0.68

4769.57
176.12
480.71
43.66

8299.78
1.03

F20

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2000.00
2002.48
2042.35
2000.00
2029.73
2000.31
2001.99
2000.00

2000.72
2022.22
2107.12
2004.56
2083.89
2039.04
2041.84
2010.72

2019.79
2038.72
2223.19
2118.44
2203.50
2196.08
2165.09
2018.75

3.61
9.22
53.86
21.62
39.28
37.08
37.76
5.97
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Figure 8. D=10,convergence cure for F13. Figure 9. D=10,convergence cure for F14.

Figure 10. D=10, convergence cure for F15. Figure 11. D=10, convergence cure for F16.

Figure 12. D=10, convergence cure for F19. Figure 13. D=10, convergence cure for F20.
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Table 6. Results of composition benchmark functions (D=10).
Functions Algorithms Best Mean Worst Std.

F21

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2200.00
2200.00
2202.36
2229.61
2202.31
2200.00
2303.01
2200.00

2214.99
2207.40
2306.09
2292.04
2261.89
2270.03
2321.40
2210.06

2316.96
2310.85
2340.28
2316.01
2350.04
2337.51
2337.41
2317.69

38.45
27.52
46.46
30.22
67.36
54.52
7.90

44.38

F22

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2200.00
2212.85
2313.66
2232.42
2314.51
2242.06
2300.86
2211.56

2288.34
2295.43
2333.72
2297.15
2324.08
2300.48
2402.10
2298.03

2301.26
2302.78
2445.20
2301.70
2336.42
2310.99
3326.92
2303.44

29.04
22.41
30.84
13.40
5.59

13.71
272.01
16.34

F23

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2604.60
2603.80
2607.53
2609.03
2608.92
2608.93
2607.45
2603.74

2611.55
2610.30
2635.34
2610.02
2636.93
2619.02
2621.13
2607.79

2620.87
2620.94
2656.25
2613.79
2648.84
2633.83
2638.47
2613.14

4.04
3.93
6.73
1.79
6.77
7.52
8.42
3.18

F24

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2439.29
2500.00
2514.84
2575.54
2527.98
2500.00
2738.87
2500.00

2587.59
2521.44
2749.66
2737.81
2759.13
2731.45
2757.52
2529.59

2747.14
2730.90
2788.14
2751.38
2790.39
2760.12
2792.37
2747.53

112.70
53.13
62.38
30.85
44.64
58.00
12.56
43.67

F25

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2897.74
2897.74
2904.29
2897.95
2904.68
2897.78
2897.78
2897.87

2905.56
2901.18
2942.61
2916.84
2943.96
2923.14
2932.68
2922.22

2943.82
2943.94
3037.82
2949.87
3029.06
2952.27
2981.20
2949.26

17.29
11.58
23.36
21.15
23.85
24.56
25.34
23.36

F26

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2600.00
2600.00
2919.27
2800.18
2757.54
2800.00
2800.00
2900.00

2879.99
2820.21
3191.92
2923.62
2999.14
2976.87
3044.33
2900.00

2900.00
2900.40
4105.35
2988.25
3985.36
3209.81
3676.63
2900.00

76.11
117.37
409.94
40.87

268.84
106.93
163.54

0.00

F27

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3088.47
3089.01
3094.42
3088.98
3094.02
3089.64
3071.57
3086.72

3089.36
3089.53
3114.02
3090.72
3098.30
3100.06
3153.85
3090.31

3091.56
3092.86
3207.80
3093.44
3102.59
3171.39
3200.00
3093.73

0.58
0.75

31.95
1.22
2.11

14.24
61.70
0.88

F28

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2800.00
3100.00
3175.85
3165.14
3130.08
3100.00
3100.00
3100.00

3108.92
3109.49
3408.12
3339.90
3244.71
3300.51
3242.22
3259.12

3383.73
3383.73
3592.96
3411.89
3732.09
3731.81
3300.00
3311.81

92.59
51.80
91.97
91.99

155.95
155.23
51.60
80.94

F29

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3150.76
3135.05
3164.00
3145.08
3157.92
3141.74
3143.04
3135.59

3165.07
3157.50
3213.82
3160.64
3201.97
3190.93
3231.20
3142.18

3199.24
3179.58
3335.00
3233.19
3308.21
3259.24
3434.08
3167.48

11.13
9.78

38.70
16.66
31.39
29.49
65.05
8.46

F30

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3410.56
3395.34

1.22E+04
5686.84

1.81E+04
4250.34
3221.32
3419.21

4133.44
3.11E+04
7.46E+05
3.44E+04
2.21E+05
2.21E+05
4140.47
4600.24

2.09E+04
8.21E+05
2.97E+06
4.67E+05
1.44E+06
1.25E+06
1.05E+04
3.18E+04

3178.85
1.49E+05
9.35E+05
8.37E+04
3.48E+05
4.42E+05
1754.09
5135.38
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Figure 14. D=10, convergence cure for F22. Figure 15. D=10, convergence cure for F23.

Figure 16. D=10, convergence cure for F25. Figure 17. D=10, convergence cure for F27.

Figure 18. D=10, convergence cure for F29. Figure 19. D=10, convergence cure for F30.
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4.1.2. Test on 30 dimension

This section introduces the results of testing on 30-dimensional problems. Table 7 shows the test
results using unimodal function, multimodal function, hybrid function and composition function.
Figure 20 is the convergence curve obtained by the unimodal function test in 30 dimensions; Figures
21–23 are the convergence curves of the multimodal function test; Figures 24–26 and Figures 27–29
respectively show the convergence curve of hybrid function and composition function test.

(1) Test on unimodal functions (D = 30)
It can be clearly seen from Table 7 that both TLMPA and LSHADE-cnEpSin have found the optimal

solution for the unimodal function test problem, and the performance is far more outstanding than other
algorithms. It can be proved that the proposed algorithm still has a powerful search performance in 30
dimensions. From the comparison of the unimodal function test results in the two dimensions of 10-
dimensional and 30-dimensional, TLMPA can achieve good results in both dimensions, which just
shows that TLMPA has good development capabilities.

Table 7. Results of unimodal benchmark functions (D=30).

Functions Algorithms Best Mean Worst Std.

F1

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

100.00
2.64E+08
2.19E+09

108.43
9.63E+08

154.51
108.94
100.00

100.00
9.26E+08
4.83E+09
4234.45

1.71E+09
4531.55

1.85E+04
100.00

100.00
1.87E+09
8.20E+09
17246.55
2.67E+09
1.92E+04
2.07E+05

100.00

0.00
4.63E+08
1.49E+09
5121.82

4.12E+08
5679.88

4.52E+04
0.00

F3

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

300.01
7901.63

1.81E+04
2.05E+04
7563.69
300.01
963.62
300.00

300.56
1.83E+04
3.91E+04
3.06E+04
1.11E+04

316.90
30167.90
300.00

306.92
3.26E+04
6.40E+04
5.14E+04
1.85E+04

575.48
1.05E+05

300.00

1.52
6445.35

1.00E+04
7529.50
2803.64

61.19
3.04E+04

0.00

(2) Test on multimodal functions (D = 30)
The test results of TLMPA on the multimodal function are shown in the test results from F4 to

F10 in Table 8. In the multimodal function test, the performance of the proposed algorithm is second
only to the LSHADE-cnEpSin algorithm. Among them, in F6 and F9, TLMPA can find the theoretical
optimal value; in F4, F5, F7 and F10, the test result of TLMPA is very close to the result value of the
first place; in F8, the proposed algorithm is the best among all algorithms. From the test results of
multimodal functions in 10 and 30 dimensions, the performance of TLMPA in 30 dimensions is better
than that in 10 dimensions. In 30 dimensions, most function test results can rank second. It can also be
seen that TLMPA performs better in high-dimensional multimodal function tests than low-dimensional
tests. In summary, TLMPA is better than most comparison algorithms in terms of multimodal function,
which also shows that TLMPA is much better than other algorithms in terms of balancing exploration
and mining capabilities.
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Table 8. Results of multimodal benchmark functions (D=30).

Functions Algorithms Best Mean Worst Std.

F4

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

403.99
536.00
592.89
486.64
595.21
400.15
407.47
404.09

467.79
588.64
693.65
493.11
662.23
476.77
448.13
411.04

512.42
641.68
888.07
518.54
801.47
526.80
540.26
516.22

32.13
31.22
90.76
9.94

61.96
41.46
34.49
3.38

F5

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

517.91
602.94
668.38
600.29
708.13
576.61
568.65
520.80

550.13
646.58
702.73
613.89
746.96
622.43
626.91
543.48

609.14
677.13
752.49
633.11
776.46
652.23
676.11
602.48

18.77
18.38
20.64
8.32

17.69
22.71
37.59
25.67

F6

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

600.00
604.53
618.92
600.00
617.08
612.78
605.30
600.00

600.00
608.42
626.42
600.00
635.04
622.29
614.63
600.00

600.00
614.50
635.48
600.00
653.51
634.94
629.22
600.00

0.00
2.16
4.88
0.00
9.87
6.42
7.31
0.00

F7

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

770.46
849.40
934.99
833.67
991.73
879.59
806.95
768.38

807.70
946.75
982.12
853.13

1050.10
931.31
889.56
801.37

874.47
994.59

1037.39
876.12

1163.71
1048.48
1024.77
812.54

26.60
38.15
28.11
11.09
46.67
45.24
51.48
9.19

F8

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

818.90
892.60
952.52
905.86
974.46
861.69
880.59
839.80

847.90
936.07
982.20
922.18

1050.46
905.26
946.36
861.28

870.64
966.24

1017.10
937.60

1115.75
939.29

1030.83
892.53

14.48
20.32
16.32
9.11

28.74
22.91
39.15
13.05

F9

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

900.00
1261.53
1823.67
900.00
2102.28
1498.50
1496.15
900.00

901.34
1612.25
2847.26
900.00

5326.49
2494.39
4057.33
900.00

906.81
2541.47
4807.11
900.00

12904.42
3886.44
9025.01
900.00

2.06
303.93
751.15
0.00

3195.42
759.77

2231.98
900.00

F10

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

5134.61
4332.75
5880.99
5406.03
7482.77
3685.79
3918.78
2807.29

6025.47
5463.91
6844.05
6045.46
8205.98
7177.34
4836.21
3267.93

6952.04
6458.99
7971.80
6505.80
8700.37
8436.34
7734.18
3599.24

443.24
552.62
499.43
306.52
393.08

1284.94
852.09
250.22
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(3) Test on multimodal functions (D = 30)
In Table 9, F11 to F20 are the test results of hybrid functions. The performance of TLMPA in

hybrid function fully reflects its superior search performance. According to the test results of F13,
F14, F15 and F19, TLMPA has achieved excellent results in the test of these functions, especially in
all algorithms; among F11, F12, F16, F17, F18 and F20, TLMPA is not the first but always the second.
It is worth mentioning that the best values obtained by TLMPA in F17, F18 and F20 are the smallest
among all algorithms. Similarly, judging from the comparison of the results of 10-dimensional and
30-dimensional, the performance of TLMPA in 30-dimensional is better than 10-dimensional, because
the number of second-ranked ones is higher. Finally, TLMPA shows its strong search ability in the
hybrid function.

(4) Test on composition functions (D = 30)
The test results of the composition function correspond to the test results from F21 to F30 in the

Table 10. From the result point of view, the test results of TLMPA in F21, F23, F24, F29 and F30 are
the best among all the algorithms and the closest to the optimal value. Although in F22, F25, F26, F27
and F28, TLMPA performance is not the best algorithm, but it is also a sub-optimal algorithm, which
also reflects that its search performance in complex functions is unmatched by other algorithms.The 30-
dimensional composition function test result is also much better without the 10-dimensional situation.
TLMPA fully reflects its powerful search performance in the case of high-dimensionality.

Figure 20 shows that the convergence speeds and convergence accuracy of TLMPA are better than
most algorithms; Figures 21–23 show the convergence curves of the multimodal function test. Except
for Figure 23, the convergence of TLMPA is second to that of the LSHADE-cnEpSin algorithm;
Figures 24–25 show that the convergence of TLMPA is better than most algorithms, and can be
ranked second. In Figure 26 to Figure 29, the convergence of TLMPA is the best among all
algorithms, and both search speed and accuracy are better than other algorithms.
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Table 9. Results of hybrid benchmark functions (D=30).
Functions Algorithms Best Mean Worst Std.

F11

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1108.76
1179.64
1464.39
1114.26
1454.52
1174.93
1126.04
1100.49

1129.83
1280.45
2026.35
1160.71
1602.71
1253.13
1226.37
1115.07

1180.87
1339.68
3574.74
1188.52
1712.10
1332.92
1317.43
1167.50

22.24
39.75
786.37
27.13
66.50
46.03
47.37
16.70

F12

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

5896.59
1.68E+06
8.29E+07
3.46E+05
8.36E+07
1.78E+04
3.48E+04
8109.98

3.07E+04
6.70E+06
2.66E+08
2.14E+06
2.11E+08
8.22E+04
5.04E+05
1.86E+04

1.01E+05
1.69E+07
5.53E+08
7.38E+06
3.10E+08
7.93E+05
3.05E+06
4.43E+04

2.14E+04
3.95E+06
1.34E+08
2.16E+06
7.11E+07
1.74E+05
6.59E+05
9330.52

F13

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1352.68
1996.48

3.30E+07
1.58E+04
3.35E+07
3789.75
1930.95
2507.85

1504.95
9282.64

1.17E+08
4.95E+04
5.85E+07
1.85E+04
6.57E+04
4384.25

2129.78
5.02E+04
3.84E+08
1.54E+05
1.22E+08
6.01E+04
2.34E+05
6.34E+03

181.13
1.16E+04
9.19E+07
3.30E+04
2.27E+07
1.52E+04
7.33E+04
1204.77

F14

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1405.34
1444.35

2.83E+04
2.06E+04
1.46E+04
2241.97
2653.42
1458.51

1428.44
1459.16

8.38E+04
1.08E+05
3.59E+04
7425.54

4.64E+04
1616.62

1445.72
1486.11

4.90E+05
4.10E+05
8.76E+04
1.70E+04
1.58E+05
1777.20

11.06
11.20

1.02E+05
9.30E+04
1.86E+04
4700.62

4.22E+04
84.13

F15

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1507.48
1613.72

4.02E+05
3474.42

1.95E+06
1872.63
1850.12
1649.09

1528.57
1705.10

1.48E+06
1.31E+04
6.62E+06
5302.28

2.62E+04
1806.91

1605.80
1929.66

4.92E+06
3.15E+04
1.27E+07
1.13E+04
9.86E+04
2008.03

24.60
85.17

1.23E+06
8338.03

3.03E+06
3238.49

2.58E+04
103.08

F16

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1803.01
1898.36
2115.97
1904.83
2815.55
1796.40
1872.43
1871.02

2171.83
2284.67
2725.28
2142.38
3211.74
2342.55
2645.30
2034.69

2425.07
2639.25
3233.92
2500.67
3543.79
2663.98
3538.39
2377.25

205.44
189.55
305.06
160.14
248.60
249.58
372.68
91.79

F17

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1742.30
1761.61
1845.78
1791.89
1929.51
1823.71
2058.56
1754.84

1846.41
1831.86
2106.08
1874.63
2222.28
2084.07
2337.84
1818.86

2054.81
1995.17
2370.32
2042.24
2518.75
2374.49
2616.10
2002.95

85.76
72.27
146.82
67.73
170.94
170.26
167.34
65.97

F18

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1885.75
2332.33

6.35E+05
1.47E+05
2.45E+05
4.61E+04
4.54E+04
2126.33

4713.72
1.31E+04
1.77E+06
4.38E+05
8.85E+05
2.17E+05
3.89E+05
4348.39

2.80E+04
4.29E+04
3.96E+06
1.18E+06
1.92E+06
9.34E+05
1.71E+06
1.78E+04

5966.83
1.00E+04
9.65E+05
2.61E+05
4.98E+05
2.01E+05
4.42E+05
4168.74

F19

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

1908.00
1917.47

1.19E+06
2096.58

2.67E+06
2227.19
2178.11
2002.99

1913.86
1937.40

3.38E+06
1.15E+04
1.84E+07
9094.10

1.52E+04
2200.74

1919.50
1970.86

8.90E+06
3.48E+04
5.30E+07
2.64E+04
5.70E+04
2670.13

3.19
13.30

2.01E+06
9541.34

1.26E+07
6916.59

1.62E+04
178.36

F20

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2034.87
2043.36
2298.02
2042.79
2391.56
2175.93
2231.21
2061.00

2171.74
2191.46
2445.06
2173.95
2620.64
2346.24
2553.75
2125.15

2369.48
2397.55
2658.77
2398.05
3050.56
2538.82
2867.15
2365.07

96.33
74.85
108.72
93.53
142.70
105.62
135.26
73.06
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Table 10. Results of composition benchmark functions (D=30).
Functions Algorithms Best Mean Worst Std.

F21

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2325.65
2360.59
2386.47
2453.06
2365.04
2395.11
2382.79
2334.58

2342.28
2410.77
2480.59
2421.01
2527.05
2405.85
2441.32
2363.38

2359.06
2457.90
2537.60
2436.71
2565.55
2459.38
2493.43
2382.87

9.89
45.29
22.45
7.15
20.05
26.49
28.45
14.12

F22

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2300.00
2408.85
2718.12
2430.91
2550.35
2300.00
2300.00
2300.00

3377.69
2476.42
5824.30
5090.69
7770.29
2639.68
5837.70
2409.21

7938.46
2593.93
8845.78
7928.37
9856.78
6539.35
7506.35
2498.75

2156.88
50.28

2618.08
2483.25
2781.48
1054.75
1077.88
37.82

F23

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2400.00
2637.19
2852.26
2756.43
2847.97
2755.95
2755.24
2673.36

2677.34
2749.12
2878.28
2772.96
2894.49
2845.00
2826.90
2742.36

2709.98
2802.82
2920.24
2785.73
2944.82
3080.52
2894.98
2847.35

67.89
39.81
17.23
10.44
28.01
69.92
42.90
45.44

F24

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2842.17
2912.35
3016.32
2928.05
3021.42
2878.36
2910.14
2865.36

2867.08
2960.03
3055.13
2968.37
3051.54
2976.41
3006.00
2932.69

2892.04
2991.72
3105.99
2990.98
3078.36
3087.08
3156.88
3050.86

13.17
22.20
27.17
13.93
17.60
53.25
54.80
46.39

F25

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2883.44
2921.51
2952.28
2886.84
2967.03
2883.81
2875.21
2883.76

2886.67
2969.72
3048.51
2887.72
3048.43
2917.80
2879.89
2903.31

2888.24
3048.02
3336.89
2888.73
3164.29
2947.95
2898.91
2967.33

1.54
32.10

107.15
0.63
49.65
23.67
5.05
23.02

F26

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

2900.00
3379.85
4150.01
4522.55
5708.05
2800.00
4191.27
2800.00

3718.49
3707.27
5775.59
4735.17
6249.01
5836.38
5434.26
3680.43

4353.77
4708.74
6611.84
4946.21
7092.82
8324.18
6474.24
4169.71

587.31
429.31
491.37
117.96
355.45

1629.29
614.47
98.36

F27

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3182.70
3203.98
3244.41
3197.98
3259.37
3218.40
3200.01
3218.81

3202.47
3221.74
3284.04
3209.42
3283.29
3271.11
3200.01
3269.20

3213.52
3249.77
3357.98
3216.51
3329.09
3389.73
3200.01
3319.18

7.73
11.53
32.82
4.52
20.51
41.83
0.00
26.50

F28

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3100.00
3245.99
3399.55
3182.83
3321.01
3203.11
3300.01
3100.00

3147.18
3337.53
3499.69
3209.62
3402.61
3237.56
3300.01
3130.84

3213.98
3401.18
3675.86
3257.45
3471.63
3359.59
3300.01
3332.05

51.62
41.49
74.87
19.61
35.52
37.90
0.00

77.83

F29

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

3309.11
3317.46
3767.02
3424.39
3806.41
3681.04
3451.70
3401.05

3443.20
3544.66
3989.66
3574.70
4249.43
4029.68
3735.66
3640.10

3554.83
3801.36
4225.02
3734.53
4570.40
4374.03
4110.12
3918.82

63.64
132.48
148.42
78.87

194.48
223.91
172.96
159.03

F30

TLMPA
MPA
GWO

DE
SSA

TLBO
PSO

LSHADE-cnEpSin

5062.62
7395.12

9.03E+06
9333.19

3.68E+06
5450.79
3255.58
5229.21

5419.53
1.06E+04
2.19E+07
1.54E+04
1.55E+07
1.02E+04
9384.12
6874.69

6333.27
1.45E+04
4.47E+07
3.17E+04
3.55E+07
1.58E+04
3.13E+04
2.10E+04

384.87
2082.83

1.00E+07
6242.66

9.23E+06
3147.32
7971.92
3612.04
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Figure 20. D=30, convergence cure for F1. Figure 21. D=30, convergence cure for F6.

Figure 22. D=30, convergence cure for F7. Figure 23. D=30, convergence cure for F10.

Figure 24. D=30, convergence cure for F12. Figure 25. D=30, convergence cure for F16.
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Figure 26. D=30, convergence cure for F18. Figure 27. D=30, convergence cure for F24.

Figure 28. D=30, convergence cure for F27. Figure 29. D=30, convergence cure for F29.

4.2. Statistical tests

Through the analysis of the previous experimental data, the test result of TLMPA is satisfactory,
and it can be preliminarily considered that the proposed algorithm has strong competitiveness among
all the comparison algorithms by virtue of its superior search performance. Statistics on the
10-dimensional and 30-dimensional experimental results are shown in Table 11. This table shows the
average performance of the proposed algorithm is better than, equal to, or worse than other
comparison algorithms.

It can be seen from the data in the table that in the case of 10 dimensions, the proposed algorithm
is better than MPA, GWO, DE, SSA, TLBO, PSO, and LSAHDE-cnEpSin in 17, 29, 19, 29, 27, 28
and 12 benchmark functions respectively; TLMPA is equal to MPA, GWO, DE, SSA, TLBO, PSO,
LSAHDE-cnEpSin in 0, 0, 2, 0, 1, 1, and 4 benchmark functions; the proposed algorithm is inferior
to the comparison algorithm with 12, 0, 8, 0, 1 and 0 benchmark functions respectively. In the 30-
dimensional test results, the number of TLMPA’s performance better than the comparison algorithm is
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25, 29, 26, 29, 28, 25, and 12 functions; the number of the proposed algorithm equal to the comparison
algorithm is 0, 0, 0, 0, 0, 0, 0 and 2 benchmark functions; the number of TLMPA worse than the
comparison algorithm is 4, 0, 3, 0, 1, 4 and 15 benchmark functions respectively.

Table 11. Statistical results of the IEEE CEC-2017 problems.

Algorithms Dimension Better Equal Less than

MPA D=10
D=30

17
25

0
0

12
4

GWO D=10
D=30

29
29

0
0

0
0

DE D=10
D=30

19
26

2
0

8
3

SSA D=10
D=30

29
29

0
0

0
0

TLBO D=10
D=30

27
28

1
0

1
1

PSO D=10
D=30

28
25

1
0

0
4

LSHADE-cnEpSin D=10
D=30

12
12

4
2

13
15

* Where “Better”, “Equal” and “Less than” represent the number of problems that the performance of TLMPA is
significantly better than, almost equal to, and significantly worse than the corresponding algorithm, respectively.

In addition, in order to verify that the results obtained are not accidental, a non-parametric
wilcoxon non-parametric statistical test was conducted in this paper. Wilcoxon non-parametric
statistical test returns a parameter called p-value. When p is less than 0.05, it means that there is a
significant difference between the two algorithms in solving the problem; when p is greater than 0.05,
it means that there is no significant difference between the two algorithms in solving the problem.
Table 12 shows the results of the p-value test with a dimension of 10. From the table, in functions
F10, F12, F13, F16, F21, F25, F26, F27 and F30, the proposed algorithm has no significant difference
from MPA; in F16 and F29, the proposed algorithm has no significant difference with
LSHADE-cnEpSin. In F11, F16, F20, F22, F23 and F29, there is no significant difference from DE;
in F7 and F10, there is no significant difference from PSO. Overall, the proposed algorithm is
significantly different from the comparison algorithm.

AIMS Mathematics Volume 6, Issue 2, 1395–1442.



1425

Table 12. Results of the p-value IEEE CEC-2017 sets (D = 10).

ID
MPA VS
TLMPA

GWO VS
TLMPA

DE VS
TLMPA

SSA VS
TLMPA

TLBO VS
TLMPA

PSO VS
TLMPA

LSHADE-cnEpSin
VS TLMPA

F1 2.60E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.22E-06
F3 0.006232 1.73E-06 1.73E-06 1.73E-06 1.72E-06 1.72E-06 1.72E-06
F4 0.003162 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.60E-06 1.73E-06
F5 0.025637 1.73E-06 4.29E-06 1.73E-06 0.002105 0.001593 3.52E-06
F6 1.73E-06 1.73E-06 1 1.73E-06 1.73E-06 2.56E-06 1.73E-06
F7 1.02E-05 1.73E-06 4.73E-06 1.73E-06 0.599936 0.404835 5.75E-06
F8 1.73E-06 1.73E-06 3.72E-05 1.73E-06 1.73E-06 0.001965 6.89E-05
F9 1.73E-06 1.73E-06 1 1.73E-06 1.73E-06 3.94E-05 1.78E-05

F10 0.975387 0.0038542 1.92E-06 1.73E-06 0.228880 0.926255 2.35E-06
F11 0.031603 1.73E-06 0.093676 1.73E-06 1.73E-06 3.52E-06 5.75E-06
F12 0.861213 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.92E-06
F13 0.158855 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 2.35E-06
F14 0.035009 1.73E-06 7.51E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06
F15 0.071903 1.73E-06 2.35E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
F16 0.452807 1.73E-06 0.120445 1.73E-06 0.00016 5.22E-06 0.734325
F17 1.73E-06 1.73E-06 0.011748 1.73E-06 1.73E-06 1.73E-06 6.89E-05
F18 1.73E-06 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
F19 3.72E-05 1.73E-06 4.07E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06
F20 1.73E-06 1.73E-06 0.135296 1.73E-06 1.73E-06 1.73E-06 1.23E-05
F21 0.571646 6.34E-06 7.69E-06 1.36E-05 0.000453 1.92E-06 0.000115
F22 0.001593 1.73E-06 0.53044 1.73E-06 0.000174 2.35E-06 0.001709
F23 0.280214 1.73E-06 0.085896 1.73E-06 0.000332 5.31E-05 0.14704
F24 0.024308 1.73E-06 6.34E-06 6.34E-06 1.64E-05 1.92E-06 6.89E-05
F25 0.221022 2.35E-06 0.002957 5.75E-06 0.000174 3.72E-05 0.000664
F26 0.271155 1.73E-06 0.001004 0.000189 0.000712 2.91E-05 0.013741
F27 0.360039 1.73E-06 0.000115 1.73E-06 1.92E-06 0.000616 3.88E-06
F28 0.000261 1.73E-06 4.29E-06 1.8E-05 5.79E-05 5.79E-05 0.000241
F29 0.006424 2.35E-06 0.071903 3.88E-06 0.000388 5.22E-06 0.440522
F30 0.130592 1.73E-06 5.22E-06 1.73E-06 1.73E-06 1.73E-06 0.000359

* Bold numbers represent the p > 0.05

Table 13 shows the results of the p-value test with a dimension of 30. From the table, only a
few functions show that the proposed algorithm is not significantly different from the comparison
algorithm. For example, in functions F4, F12, F16, F18, F22 and F28, the proposed algorithm has
no significant difference from LSHADE-cnEpSin; in function F30, there is no significant difference
from PSO; in F4 and F22, there is no significant difference from TLBO; in F16, F17, F20 and F26,
there is no significant difference from MPA. In the remaining functions, TLMPA and other algorithms
are significantly different. Therefore, the two-dimensional p-value test results show that TLMPA has
superior performance.
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In order to further verify the reliability of the experimental results, this paper also carries out the
Friedman rank test [37] on the experimental results, and the test results are shown in Table 14. From
the data in the table, it is easy to observe that whether it is 10-dimensional or 30-dimensional, the score
of TLMPA can rank second, second only to LSHADE-cnEpSin. This also shows that the performance
of TLMPA is better than most comparison algorithms.

Table 13. Results of the p-value IEEE CEC-2017 sets (D = 30).

ID MPA VS
TLMPA

GWO VS
TLMPA

DE VS
TLMPA

SSA VS
TLMPA

TLBO VS
TLMPA

PSO VS
TLMPA

LSHADE-cnEpSin
VS TLMPA

F1 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F3 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.040044 8.86E-05 0.1454
F4 8.86E-05 8.86E-05 0.003592 8.86E-05 0.331723 0.043804 0.681322
F5 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.000103 0.025094
F6 8.86E-05 8.86E-05 0.015625 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F7 8.86E-05 8.86E-05 0.000189 8.86E-05 8.86E-05 0.000338 0.03334
F8 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.004045
F9 8.86E-05 8.86E-05 6.1E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05

F10 0.001162 0.00078 1 8.86E-05 0.003185 0.000219 8.86E-05
F11 8.86E-05 8.86E-05 0.001162 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F12 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.043804 0.000189 0.073138
F13 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F14 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F15 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F16 0.1454 0.000103 0.550292 8.86E-05 0.03334 0.000892 0.350656
F17 0.525653 0.000103 0.295878 8.86E-05 0.000189 8.86E-05 0.82276
F18 0.002495 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.455273
F19 0.000103 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F20 0.433048 8.86E-05 0.82276 8.86E-05 0.00039 8.86E-05 0.079322
F21 0.001325 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.000254
F22 0.247145 0.002495 0.01524 0.000293 0.331723 0.001162 0.488708
F23 0.000338 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.000338
F24 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.00014
F25 8.86E-05 8.86E-05 0.00455 8.86E-05 0.000254 0.001162 0.000892
F26 0.654159 8.86E-05 8.86E-05 8.86E-05 0.000449 8.86E-05 0.000449
F27 8.86E-05 8.86E-05 0.001162 8.86E-05 8.86E-05 0.067355 8.86E-05
F28 8.86E-05 8.86E-05 0.000293 8.86E-05 8.86E-05 8.86E-05 0.501591
F29 0.025094 8.86E-05 0.001162 8.86E-05 8.86E-05 0.000254 0.00078
F30 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 0.313463 0.002495

* Bold numbers represent the p > 0.05

Table 14. Friedman rank test.
Algorithms Dimensions Mean rank Rank Dimensions Mean rank Rank

TLMPA D = 10 2.45 2 D = 30 2.24 2
MPA D = 10 2.97 3 D = 30 4.13 4
GWO D = 10 6.98 8 D = 30 6.94 7

DE D = 10 4.13 4 D = 30 4.05 3
SSA D = 10 6.93 7 D = 30 7.27 8

TLBO D = 10 4.87 5 D = 30 4.6 5
PSO D = 10 5.32 6 D = 30 4.76 6

LSHADE-cnEpSin D = 10 2.33 1 D = 30 2.01 1
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4.3. CPU runtime comparison of algorithms

This section compares the CPU runtime of the proposed algorithm and the comparison algorithm
in both dimensions. The CPU time is calculated by each algorithm under the same function evaluation
times. The results are shown in Tables 15 and 16. Among them, Table 15 is the result of 10 dimensions,
and Table 16 is the result of 30 dimensions. It should be noted that all times are measured in seconds.

TLMPA ranks fifth and sixth in most functions of the 10-dimensional running time, mainly because
it is a hybrid algorithm, the structure is much more complicated than other algorithms, and the cost of
running is higher than the original version. It is larger than other algorithms, but it is not the worst.
The gap with the original algorithm is not very large, which is within an acceptable range. It can be
seen from Table 15 that the average running time of TLMPA in F19, F20 and F21 is less than that
of the original MPA; the average running time of TLMPA is slightly shorter than that of TLBO and
significantly shorter than that of DE. This also shows that the TLMPA running time cost obtained by
hybrid MPA with TLBO and DE is reasonable. Overall, the cost of TLMPA is acceptable.

Table 15. The result of CPU running time (D = 10).
Functions TLMPA MPA GWO DE SSA TLBO PSO LSHADE-cnEpSin Rank

F1 2.0045 1.9448 1.6524 3.6529 0.9768 2.4742 1.1277 2.7826 5
F3 1.8265 1.7562 1.4420 3.2651 0.9440 2.1703 1.0440 2.2843 5
F4 1.8257 1.8160 1.4027 3.2735 0.9476 2.3389 1.0258 2.3751 5
F5 1.8370 1.7130 1.4072 3.0908 0.9632 2.1303 1.0572 2.4406 5
F6 2.0963 1.9066 1.7426 3.3781 1.0664 2.3397 1.2202 2.3848 5
F7 1.8145 1.7582 1.4427 3.2802 0.9415 2.1140 1.0250 2.2709 5
F8 1.9088 1.8904 1.4979 3.5158 0.9453 2.4594 1.1134 2.3320 5
F9 1.9214 1.8286 1.4777 3.2764 0.9539 2.3252 1.0707 2.3221 5

F10 1.8075 1.7143 1.3983 3.0979 0.9349 2.1012 1.0208 2.2393 5
F11 1.6556 1.5557 1.2634 2.8612 0.8771 1.9918 0.9214 2.1090 5
F12 1.6627 1.5669 1.2782 2.8669 0.8834 1.9225 0.9181 2.1635 5
F13 1.6770 1.5723 1.2789 2.8637 0.8918 1.9573 0.9189 2.1538 5
F14 2.1745 2.1033 1.6848 3.9154 0.9194 2.5549 1.2011 2.1110 6
F15 2.6890 2.6001 2.1402 4.6359 0.8875 3.0009 1.4732 2.1981 6
F16 2.7087 2.6316 2.1113 4.6410 0.8965 3.0325 1.4516 2.1424 6
F17 2.8771 2.7961 2.2817 4.8326 0.9604 3.1827 1.5847 2.1808 6
F18 2.6993 2.6522 2.1419 4.6401 0.8909 3.0064 1.4503 2.1889 6
F19 3.1028 3.2768 2.8262 5.7835 1.2897 3.6451 2.0889 2.5091 6
F20 2.5466 2.7114 2.1790 4.7039 0.9688 3.1292 1.5313 2.2257 5
F21 2.7497 2.7569 2.2391 4.8208 0.9662 3.2338 1.5668 2.1825 5
F22 2.9590 2.8552 2.3526 4.9141 1.0072 3.3462 1.6625 2.1708 6
F23 3.0003 2.8358 2.4046 4.9170 1.0210 3.3437 1.6943 2.2384 6
F24 3.0112 2.8589 2.4183 4.8843 1.0269 3.3324 1.6753 2.2206 6
F25 2.9275 2.8284 2.3143 4.9224 0.9936 3.3075 1.6408 2.1319 6
F26 3.0474 2.9017 2.4451 5.0104 1.0602 3.4365 1.7538 2.1998 6
F27 3.0569 2.9633 2.4566 5.1313 1.0667 3.4388 1.7321 2.3006 6
F28 3.0008 2.8554 2.4309 4.9435 1.0347 3.3709 1.7105 2.2524 6
F29 3.0287 2.8980 2.4049 5.0382 1.0374 3.3291 1.7002 2.2648 6
F30 3.3735 3.3505 2.9086 5.4548 1.3297 3.7801 2.1543 2.6331 6
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Table 16. The result of CPU running time (D = 30).

Functions TLMPA MPA GWO DE SSA TLBO PSO LSHADE-cn
EpSin Rank

F1 7.6323 7.8573 6.5477 12.8939 3.0008 8.7418 4.3609 24.0413 4
F3 8.9862 11.6044 10.8899 20.4836 3.4399 13.0999 6.9188 36.5824 3
F4 9.9125 13.1458 11.8356 22.2012 3.7366 15.3958 8.1409 42.3000 3
F5 11.8052 14.9568 12.9631 24.4922 3.4429 16.5668 8.9527 42.1545 3
F6 8.3555 10.4811 10.2049 17.5995 3.9172 11.0654 7.1083 29.1355 3
F7 7.4896 9.7797 8.6954 15.6796 3.1928 10.1980 5.7511 27.4862 3
F8 7.6358 9.8837 8.7459 15.9103 3.2140 10.3569 5.9559 27.7127 3
F9 7.6250 9.9744 9.2025 16.3137 3.2325 10.4066 6.0711 28.6323 3

F10 9.7661 13.0718 11.2039 20.9995 3.5378 12.0954 7.5865 33.2026 3
F11 10.2840 12.8474 11.2483 20.4498 3.0795 12.9829 7.6781 35.6709 3
F12 8.9658 12.4452 11.8844 19.8800 3.1871 12.9300 7.7268 36.6939 3
F13 10.4096 13.7960 12.1947 20.7861 3.0662 13.5547 7.7410 37.5436 3
F14 10.6064 15.1606 15.2805 26.4041 3.3904 16.4911 10.3368 45.2841 3
F15 10.7887 14.0818 13.6080 23.4470 3.0047 15.3276 8.5517 41.5351 3
F16 11.1420 14.1826 13.8365 23.6066 3.0408 15.3722 8.8247 40.5553 3
F17 13.2182 19.3079 19.4721 32.8018 3.6738 21.3092 12.7583 52.4288 3
F18 15.6245 24.1582 22.2119 39.0985 3.4507 24.2287 13.3299 64.0582 3
F19 20.0394 29.5269 38.7540 53.6594 6.2993 30.1586 27.0481 86.6345 2
F20 24.1959 34.2016 32.1317 52.7352 4.1005 33.8648 21.0786 85.3409 3
F21 58.6689 65.8781 60.1733 100.9663 4.1584 68.8475 43.7507 159.7990 3
F22 78.7354 88.4615 80.5821 138.2244 4.3875 98.9447 59.5139 213.6537 3
F23 7.4137 7.4702 6.5517 11.0608 4.5385 7.8377 4.8477 19.7776 3
F24 8.3268 7.9334 7.7774 11.3711 4.8828 8.6093 5.5660 20.7303 5
F25 7.2586 7.1815 6.4466 10.4546 4.4719 7.6758 4.6563 19.0208 5
F26 8.2982 7.9846 7.5041 11.2277 5.1874 8.1912 5.6288 20.0805 6
F27 8.3007 8.0337 7.5452 11.3073 5.3941 8.1172 5.5275 19.9938 6
F28 7.9623 7.6016 7.1746 11.0299 4.9340 7.9203 5.0781 19.4779 6
F29 7.1416 7.0002 6.2695 10.1380 4.3787 7.3404 4.4758 18.7736 5
F30 9.8156 8.8998 8.6211 12.1276 6.7368 9.3287 6.8733 20.8718 6

At 30-dimensional, TLMPA performs better than 10-dimensional, ranking third in most functions,
and the running time in most functions is smaller than the original version, and it is also less than the
running time of most algorithms. This also just shows that TLMPA can fully reflect the stability of its
algorithm performance when dealing with higher-dimensional problems. In F19, TLMPA even ranked
second with good results; both ranked second in mixed functions. Generally speaking, the running
time of TLMPA in 30 dimensions is shorter than that of most algorithms, which reflects its reliable and
stable algorithm performance.

4.4. Result analysis

There are several well-evaluated reasons for the superior performance of the proposed TLMPA
algorithm compared to other competitors. First, use the effective mutation crossover scheme of the
DE algorithm and the fast search ability of the TLBO algorithm, and find a better solution in each
iteration process to replace the worst agent. This factor significantly enhances the global search
performance of the algorithm. Secondly, in the second phase of the proposed algorithm, the two
learning behaviors of “teacher” and “learner” of the TLBO algorithm are carried out, which makes the
mid-stage of the proposed algorithm a good balance between exploration ability and exploitation
ability. After the cross mutation strategy of the DE algorithm, the diversity of the population is
increased, and premature convergence is also effectively avoided. Finally, the proposed algorithm
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retains the FADs effect in the original MPA, which has a certain auxiliary effect on the algorithm to
avoid falling into the local optimum.

In the initial phase of the proposed algorithm, each individual is learning from teachers (top
predators), which makes it easy for the population to gather closer to the teacher, and the search speed
is fast, but it also causes the diversity of the population to be easily lost prematurely. And then fall into
local search. After adding the crossover mutation strategy, the diversity of the population is increased
and the diversity of the lost population is made up for. In the mid-stage, both exploration and
exploitation are underway. After each individual learns the experience and knowledge imparted by the
top predator (this is regarded as exploration behavior), they communicate and interact with other
individuals (this is regarded as exploitation behavior), and learn from each other’s strengths, making
their own prey information more reliable and accurate. In this phase, the proposed algorithm uses the
enhanced diversification trend to start searching for trends, and then smoothly transfers the initial
search task to exploitation. In the later phase of the proposed algorithm, “learners” exerted their own
learning ability, coupled with an effective crossover mutation mechanism, so that the algorithm can
maintain the characteristics of population diversity and continue to search for the optimal solution.

5. Engineering design problem

The above experimental parts are all unconstrained function optimization problems, but many
optimization problems in the real world are often accompanied by complex constraints; especially
engineering structural design optimization has a large number of constraints. In order to verify the
performance of the algorithm in constrained optimization problems, four engineering optimization
problems in the structural field were tested, namely welded beam design problems, multi-disc clutch
brake design problems, pressure vessel design problems, Tension/compression spring design
problems. And compare with several other algorithms.

5.1. Welded beam design problem

The optimization goal of the welded beam design problem is the seven constraints related to shear
stress (τ), beam bending stress (θ), bar buckling load (Pc), beam end deflection (δ), normal stress (σ)
and boundary under the conditions, the welded beam is designed with the minimum manufacturing
cost. Welded beam structure as shown in Figure 30. Variable x1 refers to the thickness of the welded
beam, x2 refers to the length of the welded joint, x3 refers to the width of the welded beam, x4 refers to
the thickness of the beam, and the mathematical formula can be expressed as:

Minimize f (X) = 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

s.t.g1 (X) = τ (X) − τmax

g2 (X) = σ (X) − σmax

g3 (X) = x1 − x4 ≤ 0

g4 (X) = 0.125 − x1 ≤ 0
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g5 (X) = δ (X) − 0.25 ≤ 0

g6 (X) = P − Pc (X) ≤ 0

g7 (X) = 0.10471x2
1 + 0.04811x3x4 (14 + x2) − 5 ≤ 0

0.1 ≤ x1 ≤ 2; 0.1 ≤ x2 ≤ 10; 0.1 ≤ x3 ≤ 10; 0.1 ≤ x4 ≤ 2

where, τmax is the maximum acceptable shear stress, σmax is the maximum acceptable normal stress,
and P is the load. Calculated as follows:

τ (X) =

√
τ2

1 + 2τ1τ2

( x2

2R

)
+ τ2

2 (18)

τ1 =
P

√
2x1x2

(19)

τ2 =
MR
J

(20)

M = P
(
L +

x2

2

)
(21)

J (X) = 2
{√

2 x1x2

[
x2

2

4
+ (

x1 + x3

2
)
2
]
} (22)

M in Eq 21 and J(X) in Eq 22 represent moment of inertia and polarity, respectively, and the remaining
parameters are shown in Eqs 23–27.

R =

√
x2

2

4
+

( x1 + x3

2

)2
(23)

σ (X) =
6PL
x4x2

3

(24)

δ (X) =
6PL3

Ex3
3x4

(25)

Pc (X) =
4.013E

√
x2

3 x6
4

36

L2

1 − x3

2L

√
E

4G

 (26)

G = 12 × 106 psi, E = 30 × 106 psi, P = 6000lb, L = 14in (27)
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Figure 30. The structure of welded beam design.

Table 17 records the comparative experimental results of the optimal solution of the welded beam
design problem. From the table, the proposed algorithm shows superior performance in solving the
welded beam design problem, and the optimal value obtained by the test is lower than the previous
research result. All tests are run independently 30 times, and finally the average value is taken as the
test result. The best fitness value found by the TLMPA is f (X) = 1.724852, and the corresponding
optimal solution is X = [0.20572964, 3.470488666, 9.03662391, 0.20572964]. It can be explained that
TLMPA has better optimization accuracy in solving spring pressure design problems.

Table 17. Comparative results for the welded beam design problem.
Algorithms Optimum variables Optimum cost

h l t b
TLMPA 0.20572964 3.470488666 9.03662391 0.20572964 1.724852
SSA [38] 0.205700 3.471400 9.036600 0.205700 1.724910
GA3 [39] 0.205986 3.471328 9.020224 0.206480 1.728226
GSA [40] 0.182129 3.856979 10 0.202376 1.879952
WCA [41] 0.205728 3.470522 9.036620 0.205729 1.724856
CPSO [42] 0.202369 3.544214 9.048210 0.205723 1.728024

Random [43] 0.457500 4.731300 5.085300 0.660000 4.118500
David [43] 0.243400 6.255200 8.291500 0.244400 2.384110
Simple [43] 0.279200 5.625600 7.751200 0.279600 2.530730
ACO [45] 0.205700 3.471131 9.036683 0.205731 1.724918
ESs [68] 0.199742 3.61206 9.0375 0.206082 1.7373
CDE [69] 0.203137 3.542998 9.033498 0.206179 1.733462

5.2. Multi-plate disc clutch brake design problem

In this discrete benchmark task, the goal is to optimize the total weight of the multi-disc clutch
brake, involving five variables: driving force (F), inner and outer radius (r1 and r0), number of friction
surfaces (Z) and disc thickness (t). Figure 31 shows a multi-disc clutch brake. Since this problem
contains 8 different constraints, the difficulty of solving the optimization problem is increased, and
the feasible region in the solution space only accounts for 70%. The mathematical formula can be
expressed as:
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Minimize f (x) = π
(
x2

2 − x2
1

)
x3 (x5 + 1) ρ

s.t.g1 (x) = x2 − x1 − ∆R ≥ 0

g2 (x) = Lmax − (x5 + 1) (x3 + δ) ≥ 0

g3 (x) = Pmax − Prz ≥ 0, g4 (x) = Pmaxvsr max − Przvsr ≥ 0,

g5 (x) = vsr max − vsr ≥ 0, g6 (x) = Tmax − T ≥ 0

g7 (x) = Mh − sMs ≥ 0, g8 (x) = T ≥ 0

where Mh = 2
3µx4x5 x3

2−x3
1

x2
2−x2

1
,w = πn

30 rad/s

A = π
(
x2

2 − x2
1

)
mm2,

Prz = x4
A N/mm2,Vsr = πRsrn

30 mm/s,Rsr = 2
3

x2
2−x2

1
x2

2 x2
1

mm

T =
Izπn

30(Mh+M f )mm,∆r = 20mm, Lmax = 30mm, µ = 0.6

Tmax = 15s, µ = 0.5, s = 1.5,Ms = 40Nm,

pmax = 1Mpa, ρ = 0.0000078kg/mm3,

vsr max = 10m/s, δ = 0.5mm, s = 1.5

Tmax = 15s, n = 250rpm, Iz = 55kg/m2,

Ms = 40Nm,M f = 3Nm

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,

60 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9, i = 1, 2, 3, 4, 5
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Figure 31. Multi-plate disc clutch brake problem.

Table 18 records the comparison experiment of the optimal solution of the multi-disc clutch
separator. Judging from the table, the proposed algorithm shows superior performance in solving the
design problem of multi-disc clutch separator, and the test results are better than previous research
results. All tests are run independently 30 times, and finally the average value is taken as the test
result. The best fitness value found by the TLMPA algorithm is f(X) = 0.235242458, and the
corresponding optimal solution is X= [70, 90, 1, 703.3836952, 2]. It can be explained that TLMPA
has better optimization accuracy in solving the design problem of multi-disc clutch separator.

Table 18. Comparative results for multi-plate disc clutch brake problem.

Algorithms ri(x1) r0(x2) t(x3) F(x4) Z(x5) Optimal Cost
TLMPA 70 90 1 703.3836952 2 0.235242458

WCA [41] 70 90 1 910 3 0.313656
TLBO [11] 70 90 1 810 3 0.313656
PVS [44] 70 90 1 980 3 0.31366

5.3. Pressure vessel design problem

The optimization goal of the pressure vessel problem is to minimize the total cost. Constraints
include material costs, molding costs, and welding costs. There are lids on both ends of the container,
and it has a hemispherical head. The design structure of the pressure vessel is shown in Figure 32.
The four variables in this problem: shell thickness (T s), head thickness (Th), inner diameter (R), and
cylindrical section length (L) of the vessel [73]. The mathematical model of pressure vessel design is
as follows:

Consider Z = [z1, z2, z3, z4] = [h, l, t, b]

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x2

1x4 + 19.84x2
1x3

s.t.g1 (x) = −x1 + 0.0193x3 ≤ 0

g2 (x) = −x3 + 0.00954z3 ≤ 0
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g3 (x) = −πx2
3x4 −

4
3πx3

3 + 1, 296, 00 ≤ 0

g4 (x) = x4 − 240 ≤ 0

Variable range 0 ≤ x1, x2 ≤ 99, 0 ≤ x3, x4 ≤ 200

Figure 32. Pressure vessel design and its features.

Table 19 records the comparison experiment of the optimal value of the pressure vessel design
problem. From the table, the proposed algorithm shows strong optimization performance in solving
pressure vessel design problems, and the optimal value obtained by the test is lower than the result value
of other algorithms. All tests are run independently 30 times, and finally the average value is taken
as the test result. The optimal fitness value found by the TLMPA algorithm is f(X) = 5885.332774,
and the corresponding optimal solution is X= [0.778168641, 0.384649163, 40.31961872, 200]. This
shows that TLMPA has better optimization accuracy in solving pressure vessel design problems.

Table 19. Comparative results for the pressure vessel design problem.
Algorithms Optimum variables Optimum cost

Ts Th R L
TLMPA 0.778169 0.384649 40.319618 200 5885.332774

ACO [45] 0.812500 0.437500 42.098353 176.637751 6059.7258
WOA [46] 0.812500 0.437500 42.0982699 176.638998 6059.7410
SCA [47] 0.8125 0.4378 42.0883699 176.648998 6058.2907
ES [48] 0.812500 0.437500 42.098087 176.640518 6059.7456

VPL [49] 0.815200 0.426500 42.0912541 176.742314 6043.986
PSO-DE [50] 0.812500 0.437500 42.098446 176.636600 6059.71433
RCSA [51] 0.9803 0.4854 50.7236 92.7062 6335.4270
GAS [52] 0.937500 0.50000 48.329 112.679 6410.3811
MFO [62] 0.8125 0.437500 42.098445 176.636596 6059.7143
BA [65] 0.812500 0.437500 42.098445 176.636595 6059.7143

IACO [66] 0.812500 0.437500 42.098353 176.637751 6059.7258
G-QPSO [67] 0.812500 0.437500 42.0984 176.6372 6059.7208
BIANCA [70] 0.812500 0.437500 42.096800 176.658000 6059.9384

CSS [72] 0.812500 0.437500 42.103624 176.572656 6059.0888
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5.4. Tension/compression spring design problem

The optimization goal of the tension/compression spring (TCS) design problem is to minimize
the weight of the spring. The constraints are the minimum deflection (g1(X)), shear stress (g2(X)),
impact frequency (g3(X)) and outer diameter limit (g4(X)). For design drawings, see Figure 33. Setting
variable x1 refers to the diameter of the coil, x2 refers to the diameter of the coil, and x3 refers to the
number of coils. The mathematical formula can be expressed as:

Minimize f (X) = (x3 + 2) x2x2
1

s.t.g1 (X) = 1 − x3
2 x3

71785x4
1
≤ 0

g2 (X) =
4x2

2−x1 x2

12566(x2 x3
1−x4

1)
+ 1

5180x2
1
− 1 ≤ 0

g3 (X) = 1 − 140.45x1
x2

2 x3
≤ 0

g4 (X) = x1+x2
1.5 − 1 ≤ 0

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

Figure 33. Structure of the TCS design.

Table 20 records the comparison experiment of the optimal value of the tension/compression spring
design problem. It can be seen from the table that the optimal value obtained by the proposed algorithm
in solving the pressure vessel design problem is lower than the previous research results. All tests are
run independently 30 times, and finally the average value is taken as the test result. The optimal
fitness value found by the TLMPA algorithm is f(X) = 0.012665236, and the corresponding optimal
solution is X= [0.356532715, 11.29982336, 0.05168137]. It can be explained that TLMPA has better
optimization accuracy in solving tension/compression spring design problems.
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Table 20. Comparative results for the tension/compression spring problem.
Algorithms Optimum variables Optimum weight

D N d
TLMPA 0.356532715 11.29982336 0.05168137 0.0126652
IHS [53] 0.349871 12.076432 0.051154 0.0126706
SSA [38] 0.345215 12.004032 0.051207 0.0126763
SES [54] N/A N/A N/A 0.012732

Ray and Saini [55] 0.050417 3.979915 0.321532 0.013060
Mathematical optimization [56] 0.399918 9.018540 0.053396 0.0127303

Ray and Liew [57] 0.3681587 10.648442 0.0521602 0.012669249
CMSSA [58] 0.393380 9.423987 0.053169 0.0127043

RO [59] 0.349096 11.76279 0.051370 0.0126788
CEDE [60] 0.354714 11.410831 0.051609 0.0126702

Montes and Coello [61] 0.051643 11.397926 0.355360 0.012698
Arora [63] 0.399180 9.185400 0.053396 0.012730

CWCA [64] 0.35710734 11.270826 0.051709 0.012672
GA2 [71] 0.351661 11.632201 0.051480 0.012704

6. Research limitations and future work

Although the results shown above all show that TLMPA performs better than most comparison
algorithms, it also has some shortcomings. First of all, there is still room for improvement in the
performance of TLMPA. For example, in the test of the multimodal function, the number of
theoretical optimal values found is small, indicating that the balance of exploration and development
capabilities in multimodal functions with multiple optimal values needs to be further improved.
Secondly, the test results of TLMPA in 10 dimensions are slightly worse than those in 30 dimensions,
which indicate that TLMPA is good at optimization problems with higher dimensions. This study
only tests 10 and 30 dimensional problems, but also needs to be tested in higher dimensional
problems, such as 50 and 100 dimensions. Finally, because TLMPA hybrid the ideas of three
algorithms, its algorithm structure are a bit more complicated than the original version, so its
flexibility and lightness are worse than the original algorithm.

In the future, we will evaluate the proposed TLMPA algorithm on more complex benchmark
problems. TLMPA can be applied to many exciting scenarios, such as applying the binary version of
TLMPA to discrete and binary problems [73–76]; applying TLMPA to optimization problems such as
scheduling [77–79], neural network training [80–82], and feature selection [83–85]. Various
constraint processing techniques can also be integrated into TLMPA to introduce its effective
constraint version. In addition, multi-objective optimization is a combinatorial optimization problem,
which requires the algorithm to maintain diversity as much as possible, while TLMPA can increase
population diversity, and it is easier to find Pareto optimal solution. Moreover, the search speed and
accuracy of TLMPA algorithm are better than most of the comparison algorithms. Therefore, using
TLMPA algorithm to solve the multi-objective optimization problem will produce good results.

7. Conclusions

This article proposes a hybrid version of MPA and TLBO, TLMPA, which aims to maintain the
proper synergy between exploration and exploitation in the search zone. First, the update mechanism
of the original algorithm was improved, and the “teachers” and “learners” of TLBO were introduced to
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establish a better balance between exploration and exploitation. In addition, in order to avoid making up
for the loss of population diversity in the early phase of the algorithm, the effective mutation crossover
scheme of the differential evolution algorithm is added to the algorithm, which greatly enhances the
algorithm’s global search performance. In terms of performance evaluation, the extremely challenging
CEC-2017 benchmark test set was used to study the robustness of the TLMPA algorithm in terms
of scalability in two dimensions with dimensions of 10 and 30. The analysis of statistical test and
result comparison shows that the search performance of TLMPA is better than the original MPA and
other optimization methods. In addition, the results of engineering design problems such as welded
beam design, multi-disc clutch brake, pressure vessel design, tension/compression spring design were
compared, which also proved that TLMPA has better search performance than other algorithms.
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flight search patterns of wandering albatrosses, Nature, 381 (1996), 413–415.

33. J. D. Filmalter, L. Dagorn, P. D. Cowley, M. Taquet, First descriptions of the behavior of silky
sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean,
Bull. Mar. Sci., 87 (2011), 325–337.

34. E. Clark, Instrumental conditioning of lemon sharks, Science (New York, N.Y.), 130 (1959), 217–
218.

35. L. A. Dugatkin, D. S. Wilson, The prerequisites for strategic behaviour in bluegill sunfish, Lepomis
macrochirus, Anim. Behav., 44 (1992), 223–230.

36. V. Schluessel, H. Bleckmann, Spatial learning and memory retention in the grey bamboo shark
(Chiloscyllium griseum), Zoology, 115 (2012), 346–353.

37. D. W. Zimmerman, B. D. Zumbo, Relative power of the Wil-coxon test, the Friedman test, and
repeated-measures ANOVA on ranks, J. Exp. Educ., 62 (1993), 75–86.

38. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm
algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114
(2017), 163–191.

39. C. A. C. Coello, E. M. Montes, Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection, Adv. Eng. Inf., 16 (2002), 193–203.

40. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci.,
179 (2009), 2232–2248.

41. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-a novel
metaheuristic optimization method for solving constrained engineering optimization problems,
Comput. Struct., 110 (2012), 151–166.

42. R. A. Krohling, L. dos Santos Coelho, Coevolutionary particle swarm optimization using Gaussian
distribution for solving constrained optimization problems, IEEE Trans. Syst., Man, Cybern., Part
B (Cybernetics), 36 (2006), 1407–1416.

43. K. M. Ragsdell, D. T. Phillips, Optimal design of a class of welded structures using geometric
programming, J. Eng. Ind., 98 (1976), 1021–1025.

AIMS Mathematics Volume 6, Issue 2, 1395–1442.



1440

44. P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math.
Model., 40 (2016), 3951–3978.
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