Citation: Asaf Khan, Gul Zaman, Roman Ullah, Nawazish Naveed. Optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age[J]. AIMS Mathematics, 2021, 6(2): 1377-1394. doi: 10.3934/math.2021086
[1] | NIDA, Heroin, National Institute on Drug Abuse, 27 June 2019. Available from: https: //www.drugabuse.gov/publications/drugfacts/heroin. |
[2] | Today's Heroin Epidemic, Center for Disease Control and Prevention (CDC), July 2015. |
[3] | M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori, Pisa, 1994. |
[4] | H. R. Thieme, Mathematics in Populations Biology, Princeton University Press, Princeton, 2003. |
[5] | H. R. Thieme, C. Castillo-Chavez, How many infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (2014), 14-47. |
[6] | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function, Physica A: Statistical Mechanics and its Applications, 535 (2019), 122300. |
[7] | G. Zamana, Y. Saitob, M. Khanc, Optimal vaccination of an endemic model with variable infectivity and infinite delay, Zeitschrift für Naturforschung A, 68 (2013), 677-685. |
[8] | M. Ma, S. Liu, J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dyn., 88 (2017), 555-565. |
[9] | G. P. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput., 35 (2011), 161-178. |
[10] | I. M. Wangari, L. Stone, Analysis of a heroin epidemic model with saturated treatment function, J. Appl. Math., 2017 (2017), 1-22. |
[11] | J. Liu, T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685-1692. |
[12] | B. Fang, X. Li, M. Martcheva, L. Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Appl. Math. Comput., 263 (2015), 315-331. |
[13] | S. Djilali, T. M. Touaoula, S. E. H. Miri, A heroin epidemic model: very general non linear incidence, treat-age, and global stability, Acta Appl. Math., 152 (2017), 171-194. |
[14] | E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312-324. |
[15] | G. Mulone, B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141. |
[16] | J. Mushanyu, F. Nyabadza, G. Muchatibaya, A. G. R. Stewart, Modelling multiple relapses in drug epidemics, Ricerche Mat., 65 (2016), 37-63. |
[17] | B. Fang, X. Li, M. Martcheva, L. Cai, Global stability for a heroin model with two distributed delays, Disc. Cont. Dyna. Sys., 19 (2014), 715-733. |
[18] | Y. Muroya, H. Li, T. Kuniya, Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719-732. |
[19] | F. Nyabadza, S. D. Hove-Musekwa, From heroin epidemics to methamphetamine epidemics: Modelling substance abuse in a South African province, Math. Biosci., 225 (2010), 132-140. |
[20] | G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691. |
[21] | X. Liu, J. Wang, Epidemic dynamics on a delayed multi-group heroin epidemic model with nonlinear incidence rate, J. Nonlinear Sci. Appl., 9 (2016), 2149-2160. |
[22] | B. Fang, X. Li, M. Martcheva, L. Cai, Global stability for a heroin model with age-dependent susceptibility, J. Syst. Sci. Complex., 28 (2015), 1243-1257. |
[23] | J. Yang, X. Li, F. Zhang, Global dynamics of a heroin epidemic model with age structure and nonlinear incidence, Int. J. Biomath., 9 (2016), 1650033. |
[24] | J. Wang, J. Wang, T. Kuniya, Analysis of an age-structured multi-group heroin epidemic model, Appl. Math. Comput., 347 (2019), 78-100. |
[25] | G. Grippenberg, S. O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. |
[26] | G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker: New York, 1985. |
[27] | X. Li, J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser: Boston, 1995. |
[28] | A. Khan, G. Zaman, Optimal control strategy of SEIR endemic model with continuous agestructure in the exposed and infectious classes, Optim. Contr. Appl. Meth., 39 (2018), 1716-1727. |
[29] | D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press: New York, 1982. |
[30] | M. Martcheva, Age-Structured Epidemic Models. In: An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, Vol 61, Springer, Boston, MA, 2015. |
[31] | M. Thater, K. Chudej, H. J. Pesch, Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth, Math. Biosc. Eng., 15 (2017), 485-505. |