
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(2): 1377–1394.
DOI:10.3934/math.2021086
Received: 01 September 2020
Accepted: 11 November 2020
Published: 19 November 2020

Research article

Optimal control strategies for a heroin epidemic model with age-dependent
susceptibility and recovery-age

Asaf Khan1,2,∗, Gul Zaman1, Roman Ullah3 and Nawazish Naveed4

1 Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan
2 Department of Mathematics, FATA University, Khyber Pakhtunkhwa, Pakistan
3 Department of Computing, Muscat College, Muscat, Oman
4 Department of Information Technology, University of Technology and Applied Sciences, CAS Ibri,

Oman

* Correspondence: Email: asafkhan319@ymail.com, asaf.khan@fu.edu.pk; Tel: +923459810045.

Abstract: In the present manuscript, an age-structured heroin epidemic model is formulated with
the assumption that susceptibility and recovery are age-dependent. Keeping in view some control
measures for heroin addiction, a control problem for further analysis is presented. The main results
are the existence of control variables, sensitivities, adjoint system and the setting of an optimal control
problem. We used the techniques of weak derivatives and a general principle of Pontryagin’s type for
obtaining the optimal control problem. To compare our results, we demonstrated sample simulations
which show the effect of control on the entire population.

Keywords: heroin epidemics; age-structure; control theory; weak derivatives; adjoint equations
Mathematics Subject Classification: 49J20, 00A72, 49J50, 35B50, 37M05

1. Introduction

Heroin is highly addictive and an illegal opioid drug and commonly known as hell dust. Usually, it
is used in combination with other drugs or with alcohol which results from the risk of overdose. The
overdose of heroin can cause a lot of troubles such as coma, shallow and slow breathing and death,
etc [1]. It is observed that out of 10 heroin addicts, about 9 users used at least one other drug. Typically,
people inject heroin, however, sometimes it may be snorted or smoked. Consequences of injecting
heroin into a body include the risk of viral infection like HIV, HBV, HCV and bacterial infection of
bloodstream and skin, etc. People whose age is between 18 and 25 or addicted to opioid painkiller,
are more vulnerable to heroin addiction [2]. It is reported that the use of heroin is more than doubled
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among young adults and it tends to increase. Further, more than 45% of heroin users are addicted to
prescription of opioid painkiller.

Heroin addiction develops and propagates in a community like an epidemic disease and almost
follows the same pattern. More precisely, people are susceptible to heroin addiction initially, and
then they become active users of heroin and finally get recovery through some control measures or by
self ceasing the use of heroin. The mathematical study of epidemic diseases has a rich history, and
the readers are suggested to see the works of [3–7]. From the last two decades, the same modeling
approaches have been extended to drug addiction problems for understanding its dynamics [8–13].
Heroin epidemic models comprises of ordinary differential equations and delay differential equations
have been investigated and analyzed in [14–21] and references cited therein.

In the context of partial differential equations (PDEs), mathematicians have developed some novel
models called age-structured models to explore several insights into the heroin epidemic. Feng et.
al. assumed the age-dependent susceptibility and qualitatively analyzed an age-structured heroin
model [22]. They studied the existence of steady states and their local and global stabilities. Another
paper by Feng et. al. considered treat-age while formulating the model and the authors presented the
dynamical aspects of the model [12]. Subsequently, the theory was extended by Yang et al. [23] and
Djilali et al. [13] by incorporating different types of incident rates. A recent paper of Wang et al. [24]
dealt with the multi-group heroin epidemic that includes both treat and susceptibility age. Again the
work was restricted only to the dynamical behavior of the concerned model.

To reduce heroin addiction, government officials and health providers should take some aggressive
steps. These control measures include providing educational training to health care providers
in prescribing opioid painkillers, expansion of medication-assisted treatments, making informed
decisions, behavioral therapy, development and distribution of life-saving drugs, educating vulnerable
people about heroin addiction and its consequences, etc [2]. It is also suggested to identify those
societies who are at most risk to heroin addiction and provide them effective prevention strategies. For
active heroin users, it is suggested to treat them with medications or behavioral therapy [1]. Also,
heroin addiction takes place during the age of 18-25 among young people, thus, it is necessary to make
aware vulnerable especially young people about the harm of heroin use. The key aim of modeling
epidemics is to identify how to control such outbreaks and to eliminate the same from the community.
Since disease epidemics and drugs have the same dynamics; therefore, it is necessary to apply the
techniques of control theory to heroin models for controlling heroin addiction.

The age-structured models cited earlier are indeed a great contribution to understanding the heroin
epidemic and predicting its future behavior. However, it is worthy to notice that they have given
less attention to controlling heroin addiction. Though the authors take into account treatment classes,
it doesn’t reflect the fact that what type of treatment strategy should be adapted which is more
economical. In the current study, the authors aimed to include class-age in susceptible and recovered
classes, whereas, heroin users are assumed to depend only on time. Further, to control heroin addiction
in a community, we will use two control measures namely; treatment of active heroin users through
medications and educating susceptible people about the risk of heroin use.

The rest of the work is organized as follows. Section 1, is about the formulation and existence
of the solution to the proposed without control model. The development of the control problem, the
existence of optimal control variables, and the characterization of controls are carried out in Section
2. In Section 3, we presented a detailed comparison of both analytical and numerical results. Besides,
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we simulated both the control and without control problems and showed that the application of control
measures could markedly reduce heroin addiction. Finally, concluding remarks are given at the end of
the paper.

2. The model

Like infectious diseases, modeling the heroin epidemic follows the same transmission pattern [13,
24]. While modeling the heroin epidemic, one must keep in mind some terms such as carriers of
heroin use, relapse, time since heroin initiation to habitual use, age of susceptibility and recovery,
treatment, and many more factors. It is also suggested to interview heroin addicts and note feedback
from professionals in drug abuse-related fields. We assumed that the entire population is composed
of individuals susceptible to heroin addiction, heroin users and recovered from drug-life which are
respectively denoted by S (t), U(t) and R(t). The function s(t, a) denotes the density of susceptible
population at any time t and susceptibility-age a. Thus the total susceptible population at any time t in
terms of density function becomes

S (t) =

∫ ∞

0
s(t, a)da.

In the same way, r(t, a) represent the density of recovered people at time t having recovery-age a and
thus R(t) in terms of r(t, a) can be written as

R(t) =

∫ ∞

0
r(t, a)da.

Further, we assumed that the addicts who have treated or they quit the use of heroin by self, again may
start the use of heroin. These facts and many others motivate us to formulate the model of the form:

∂s(t, a)
∂t

+
∂s(t, a)
∂a

= −β(a)U(t)s(t, a) − µs(t, a), (2.1a)

dU(t)
dt

= U(t)
∫ ∞

0
β(a)s(t, a)da − (µ + δ + p)U(t) +

∫ ∞

0
γ(a)r(t, a)da, (2.1b)

∂r(t, a)
∂t

+
∂r(t, a)
∂a

= −(µ + γ(a))r(t, a), (2.1c)

s(t, 0) = Λ, (2.1d)
r(t, 0) = pU(t), (2.1e)
s(0, a) = s0(a), U(0) = U0 ≥ 0, r(0, a) = r0(a). (2.1f)

The parameters µ, δ, Λ and β(a) represent the natural death rate, heroin-induced removal rate,
recruitment rate, and the age-specific transmission rate. The term p stand for self-cure (users who cease
the use of heroin by self-decision) rate, whereas, γ(a) is the age-specific relapse rate. The terms s0(a)
and r0(a) are non-negative functions of a and it represent the initial age distributions of susceptible
and recovered population, respectively. Besides, the parameter used in the model are subject to the
following hypothesis:
H1. µ, p, δ, Λ > 0.
H2. β(a), γ(a) ∈ L∞+ with an essential upper bound β̄ and γ̄, respectively.
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H3. The function β(a) as well as γ(a) are Lipschitz continuous on R≥0, with Lipschitz coefficients Mβ

and Mγ, respectively.
For the sake of simplicity, let us consider some notations

Q(t) =

∫ ∞

0
β(a)s(t, a)da, L(t) =

∫ ∞

0
γ(a)r(t, a)da,

Γ(a) = e−
∫ a

0 (µ+γ(τ))dτ,Ω(a) = e−
∫ a

0 (β(η)U(t−a+η)+µ)dη.

Equations (2.1a) and (2.1c) can be solved by using the method of characteristics, thus

s(t, a) =

ΛΩ(a), t > a ≥ 0;
s0(a − t) Ω(a)

Ω(a−t) , a ≥ t ≥ 0,
(2.2)

and

r(t, a) =

pU(t − a)Γ(a), t > a ≥ 0;
r0(a − t) Γ(a)

Γ(a−t) , a ≥ t ≥ 0.
(2.3)

Similarly, by applying direct integration to Eq (2.1b) and considering (2.2) and (2.3), we get solution
of system (2.1) of the form

S (t) =

∫ ∞

0
s(t, a)da =

∫ t

0
ΛΩ(a)da +

∫ ∞

t
s0(a − t)

Ω(a)
Ω(a − t)

da, (2.4a)

U(t) =

∫ t

0

[
U(t − a)Q(t − a) + L(t − a)]e−(µ+δ+p)ada + U0e−(µ+δ+p)t, (2.4b)

R(t) =

∫ ∞

0
r(t, a)da =

∫ t

0
pU(t − a)Γ(a)da +

∫ ∞

t
r0(a − t)

Γ(a)
Γ(a − t)

da. (2.4c)

Applying standard fixed point theorem of [25] to system (2.4), we can prove that there exist a
nonnegative solution of system (2.1) over the interval [0,∞).

The desired functional space for system (2.1) is of the form

Z = L1
+ × R+ × L1

+,

where L1
+ denotes the space of positive and Lebesgue integrable function over [0,∞). The functions

from the space L1
+ are equipped with the norm

‖(φ, x, ψ)‖Z =

∫ ∞

0
|φ|da + |x| +

∫ ∞

0
|ψ|da.

Biologically, this norm is equivalent to total population. The initial conditions for system (2.1) can be
written as

Z0 := (s(0, ·),U0, r(0, ·)) = (s0(·),U0, r0(·)) ∈ Z.

Existence and uniqueness theorems along with hypothesis of the model suggest that system (2.1) has a
unique nonnegative solution using conditionsZ0 ∈ Z. Further, a continuous semi-flow χ : R+ ×Z →

Z is defined by system (2.1) and solutions have a non-empty omega limit sets because of compact
closure [26].
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3. Optimal control strategies

Naturally, heroin is highly addictive and can cause a lot of damage if not addressed properly. To
overcome its spread, aggressive steps must be taken by health providers and government officials.
It is observed that behavioral therapy and the administration of pharmacological medications are
the most effective treatments for heroin addiction. Although, the use of medicines for treatment
purpose have some side effects (such as nausea, bone pain, and vomiting, etc) that can be treated
with additional supplements. Further, it is noted that the treatment of heroin addicts through medicines
has a positive impact and as a result, the rate of crimes and heroin consumption tends to decrease.
The present study aims to include two types of measures as control variables; education campaign
and pharmacological medications. The former control variable somehow similar to behavioral therapy
and will be implemented upon the susceptible population. The educational campaign is widely used
in giving-up smoking models as a control variable and it has shown a great effect. The later control
will be imposed on heroin addicts. The strategy will be to minimize the susceptible and heroin user
population and to maximize the recovered people with the least cost.

From the dynamical perspective, optimal control theory is the most powerful and useful tool than
the calculus of variation, particularly in the epidemic problems. Since, heroin addiction is closely
related to mathematical epidemiology, therefore, it is proposed to implement the techniques of control
theory to minimize the number of susceptible and heroin users. As the problem under discussion lying
in infinite-dimensional spaces, thus, we will use the maximum principle type results introduced by Li
and Yong [27] and suggested by [28].

The proposed control problem consist of three state variables S (t), U(t), R(t) and two control
variables v1(t), v2(t) from the admissible control set

Vad =
{
v1, v2 ∈ L2(0,T )|0 ≤ v1(t) ≤ l1 ≤ 1 ∧ 0 ≤ v2(t) ≤ l2 ≤ 1, t ∈ [0,T ]

}
. (3.1)

Physical interpretation of the control v1(t) is educating susceptible population regarding heroin
addiction and its consequences, whereas, v2(t) means to treat active heroin users. Since, v1(t)s(t, a)
denotes the density of susceptible who have been educated. Therefore, the term v1(t)s(t, a) needs to
subtracted from the equation which represent the dynamics of the susceptible population and the same
will be added to the equation of recovered people. Likewise, the term v2(t)U(t) represent the number
of heroin addicts who were treated through medicines, thus, it should be subtracted from the equation
which describe the dynamics of heroin users. Since, the equation for recovered population is a PDE,
therefore, the term v2(t)U(t) will be included to the boundary condition r(t, 0) which will make it a type
of boundary control problem. Further, nature of the problem demands that vi(t) ≥ 0 for i = 1, 2. The
case vi(t) = 0 means implementation of no control measures, whereas, vi(t) = 1 shows that the entire
susceptible are educated and the heroin users are treated. Due to wide used of quadratic term for the
control variable, our objective functional will also depends quadratically upon the controls. Thus, the
objective functional will takes the following form

J(v1, v2) =

∫ T

0

[
S (t) + U(t) +

B1

2
v2

1(t) +
B2

2
v2

2(t)
]
dt, (3.2)

subject to the model

∂s(t, a)
∂t

+
∂s(t, a)
∂a

= −β(a)U(t)s(t, a) − µs(t, a) − v1(t)s(t, a), (3.3a)
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dU(t)
dt

= U(t)
∫ ∞

0
β(a)s(t, a)da − (µ + δ + p + v2(t))U(t) +

∫ ∞

0
γ(a)r(t, a)da, (3.3b)

∂r(t, a)
∂t

+
∂r(t, a)
∂a

= −(µ + γ(a))r(t, a) + v1(t)s(t, a), (3.3c)

s(t, 0) = Λ, (3.3d)
r(t, 0) = (p + v2(t))U(t), (3.3e)
s(0, a) = s0(a), U(0) = U0 ≥ 0, r(0, a) = r0(a). (3.3f)

The terms B1, B2 are positive constants and it is called balancing factors. The constant B1 and B2

represent the level of acceptance of education campaign and medication by a susceptible and an addict,
respectively. The theorem stated and proved below is about the existence of optimal control variables.

Theorem 3.1. There exists a pair of optimal control variables v?1 , v
?
2 ∈ Vad such that, J(v?1 , v

?
2 ) =

minv1,v2∈Vad J(v1, v2) subject to the system (3.3).

Proof. Clearly, the states and the control variables are nonnegative and bounded. The set Vad of all
the controls is convex and closed. Further, the boundedness of the control variables suggests the
compactness of the control system that is necessary for the existence of an optimal control. Also in the
objective functional, the integrand is a convex function on the control set Vad. In addition, there exists
two positive real numbers η1 and η2 and a constant ξ > 1 such that

J(v1, v2) ≥ η1 + η2(|v1|
2 + |v2|

2)
ξ
2 .

We noticed that our control set and the objective functional fulfill all the hypotheses of Theorem
(13.8.1) in [29] that guarantee the existence of the optimal system. Thus, there exists an optimal
control problem and hence the proof.

In order to obtain the necessary criteria of optimality, we will use the Gateaux derivative rule (also
called the weak derivatives). For this purpose, we will introduce other controls vεi (t) = vi(t)+ εhi(t), i =

1, 2, where hi(t) , 0 are variation functions and 0 < ε < 1. As the state variables are continuously
dependent on the control variables, thus, we can write S (t) = S (v1(t), v2(t)),U(t) = U(v1(t), v2(t)) and
R(t) = R(v1(t), v2(t)). By perturbing the controls variables will disturb the state as well and hence state
variable will takes the form S ε(t) = S (vε1, v

ε
2),Uε(t) = U(vε1, v

ε
2) and Rε(t) = R(vε1, v

ε
2), where

S ε(t) =

∫ ∞

0
sε(t, a)da, and Rε(t) =

∫ ∞

0
rε(t, a)da.

Accordingly due to vε1(t), vε2(t), system (3.3) becomes

∂sε(t, a)
∂t

+
∂sε(t, a)
∂a

= −β(a)Uε(t)sε(t, a) − µsε(t, a) − vε1(t)sε(t, a), (3.4a)

dUε(t)
dt

=

( ∫ ∞

0
β(a)sε(t, a)da − (µ + δ + p + vε2(t))

)
Uε(t) +

∫ ∞

0
γ(a)rε(t, a)da, (3.4b)

∂rε(t, a)
∂t

+
∂rε(t, a)
∂a

= −(µ + γ(a))rε(t, a) + vε1(t)sε(t, a), (3.4c)

sε(t, 0) = Λ, (3.4d)
rε(t, 0) = (p + vε2(t))Uε(t), (3.4e)

AIMS Mathematics Volume 6, Issue 2, 1377–1394.



1383

sε(0, a) = s0(a), Uε(0) = U0, rε(0, a) = r0(a). (3.4f)

To form the weak derivatives, first we will subtract system (3.3) from (3.4) and will make the difference
quotients sε (t,a)−s(t,a)

ε
, Uε (t)−U(t)

ε
and rε (t,a)−r(t,a)

ε
. Next, we will find the sensitivities s̄(t, a), Ū(t) and r̄(t, a)

which can be obtain by applying limε→0 to weak derivatives. The following linearized version of system
(3.3) must be satisfied by the sensitivities

∂s̄(t, a)
∂t

+
∂s̄(t, a)
∂a

= −β(a)[U(t)s̄(t, a) + Ū(t)s(t, a)] − µs̄(t, a)

− v1(t)s̄(t, a) − h1(t)s(t, a), (3.5a)

dŪ(t)
dt

= Ū(t)
∫ ∞

0
β(a)s(t, a)da + U(t)

∫ ∞

0
β(a)s̄(t, a)da − (µ + δ + p)Ū(t)

− v2(t)Ū(t) − h2(t)U(t) +

∫ ∞

0
γ(a)r̄(t, a)da, (3.5b)

∂r̄(t, a)
∂t

+
∂r̄(t, a)
∂a

= −(µ + γ(a))r̄(t, a) + v1(t)s̄(t, a) + h1(t)s(t, a), (3.5c)

s̄(t, 0) = 0, (3.5d)
r̄(t, 0) = pŪ(t) + v2(t)Ū(t) + h2(t)U(t), (3.5e)
s̄(0, a) = 0, Ū(0) = 0, r̄(0, a) = 0. (3.5f)

Next, we will use the sensitivities to obtain the adjoint system. In the case of ODEs, the adjoint are
chosen such that the sensitivity terms drop out. However in PDE models, we need the sensitivity
equations for finding the adjoint system. Each equation in the sensitivity PDEs can be written in a
simplified form as

LiΨ̄i = Fi(s,U, r, v1, v2),

with necessary initial and boundary conditions and Ψ̄i’s are the corresponding variables s̄, Ū and r̄ for
i = 1, 2, 3 respectively. Here, the linear operators Li comes from the linearization of the corresponding
state PDE operators. To obtain a characterization of the control variables, it is necessary to derive the
adjoint system. The operators in the adjoint system are the adjoint operators of the Li acting on s̄, Ū
and r̄ in the sensitivity PDEs. The operators Li and the adjoint operator L∗i are related by

〈λi,LiΨ̄i〉 = 〈L∗i λi, Ψ̄i〉,

where 〈·, ·〉 is the L2-inner product. By using the integration by parts in multidimensions, we can throw
the derivatives on each state from the operators Li onto the derivatives of the adjoint variables λi in the
operators L∗i . Once we find the adjoint operators, then one can easily obtain the adjoint equations by
using

L∗i λi =
∂(integrand of J)

∂x
,

where x stand for the state variables. To do so, first we will consider (3.5a) as

0 =

〈〈
∂s̄(t, a)
∂t

+
∂s̄(t, a)
∂a

+ [β(a)U(t) + µ + v1(t)]s̄(t, a) + [β(a)Ū(t) + h1(t)]s(t, a), λ1(t, a)
〉〉
,

=

〈〈
s̄(t, a),−

∂

∂t
λ1(t, a) −

∂

∂a
λ1(t, a) + β(a)U(t)λ1(t, a) + µλ1(t, a) + v1(t)λ1(t, a)

〉〉
AIMS Mathematics Volume 6, Issue 2, 1377–1394.
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+

〈〈
Ū(t), β(a)s(t, a)λ1(t, a)

〉〉
+

∫ T

0

∫ ∞

0
h1(t)s(t, a)λ1(t, a)da, (3.6)

with subsidiary

λ1(t,∞) = 0, λ1(T, a) = 0. (3.7)

Here the notation 〈〈·, ·〉〉 is defined as 〈〈 f1, f2〉〉 =
∫ T

0

∫ ∞
0

f1 f2dadt. On the other hand, Equation (3.5b)
will take the form

0 =

〈dŪ(t)
dt
− Ū(t)

∫ ∞

0
β(a)s(t, a)da − U(t)

∫ ∞

0
β(a)s̄(t, a)da + (µ + δ + p)Ū(t)

+v2(t)Ū(t) + h2(t)U(t) −
∫ ∞

0
γ(a)r̄(t, a)da, λ2(t)

〉
,

=

〈
Ū(t), −

dλ2(t)
dt

− λ2(t)
∫ ∞

0
β(a)s(t, a)da + (µ + δ + p)λ2(t) + v2(t)λ2(t)

〉
−

〈〈
s̄(t, a), U(t)β(a)λ2(t)

〉〉
−

〈〈
r̄(t, a), γ(a)λ2(t)

〉〉
+

∫ T

0
λ2(t)h2(t)U(t)dt, (3.8)

with

λ2(T ) = 0, (3.9)

where 〈 f1, f2〉 =
∫ T

0
f1 f2dt. In the same way, Equation (3.5c) can be written in the form of

0 =

〈〈
∂r̄(t, a)
∂t

+
∂r̄(t, a)
∂a

+ (µ + γ(a))r̄(t, a) − v1(t)s̄(t, a) − h1(t)s(t, a), λ3(t, a)
〉〉
,

0 =

〈〈
r̄(t, a),−

∂λ3(t, a)
∂t

−
∂λ3(t, a)
∂a

+ (µ + γ(a))λ3(t, a)
〉〉

−

〈〈
s̄(t, a), v1(t)λ3(t, a)

〉〉
−

〈
Ū(t), [p + v2(t)]λ3(t, 0)

〉
−

∫ T

0

∫ ∞

0
h1(t)s(t, a)λ3(t, a)dadt −

∫ T

0
h2(t)U(t)λ3(t, 0)dt, (3.10)

along the condition

λ3(t,∞) = 0, λ3(T, a) = 0. (3.11)

For future use, we will compute the weak derivative of the objective functional J(v1, v2) as

0 ≤ J′(v1, v2) =

∫ T

0

(
S̄ (t) + Ū(t) + B1h1(t)v1(t) + B2h2(t)v2(t)

)
dt. (3.12)

By rewriting and suitable arrangements, Equations (3.6), (3.8) and (3.10) yields the following adjoint
system

∂λ1(t, a)
∂t

+
∂λ1(t, a)
∂a

=β(a)U(t)λ1(t, a) + [µ + v1(t)]λ1(t) − β(a)U(t)λ2(t)
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− v1(t)λ3(t, a) − 1, (3.13a)
dλ2(t)

dt
= − λ2(t)

∫ ∞

0
β(a)s(t, a)da + (µ + δ + p)λ2(t) + v2(t)λ2(t)

− [p + v2(t)]λ3(t, 0) +

∫ ∞

0
β(a)s(t, a)λ1(t, a)da − 1, (3.13b)

∂λ3(t, a)
∂t

+
∂λ3(t, a)
∂a

=[µ + γ(a)]λ3(t, a) − γ(a)λ2(t). (3.13c)

with transversality conditions

λ1(T, a) = 0, λ2(T ) = 0, λ3(T, a) = 0, (3.14)

and boundary conditions
λ1(t,∞) = 0, λ3(t,∞) = 0. (3.15)

The following theorem will conclude our main discussion regarding the existence of an optimal control
problem.

Theorem 3.2. If v?1 , v?2 are in Vad is a pair of optimal control variables which minimizing J(v1, v2) and
(S ?(t), U?(t), R?(t)) and (λ1(t, a), λ2(t), λ3(t, a)) are the corresponding state and adjoint variables,
respectively, then

v?1 (t) = min
{
l1,max{0,

∫ ∞
0

(
λ1(t, a) − λ3(t, a)

)
s?(t, a)da

B1
}

}
, (3.16)

and

v?2 (t) = min
{
l2,max{0,

(
λ2(t) − λ3(t, 0)

)
U?(t)

B2
}

}
. (3.17)

Proof. With the help of system (3.13), we can write the weak derivative of the objective functional
defined in (3.12) as

0 ≤ J′(v) =

∫ T

0

[
S̄ (t) + Ū(t) + B1h1(t)v1(t) + B2h2(t)v2(t)

]
dt,

=

∫ T

0
S̄ (t)

[
−
∂λ1(t, a)

∂t
−
∂λ1(t, a)
∂a

+

(
β(a)U(t) + µ + v1(t)

)
λ1(t, a) − β(a)U(t)λ2(t)

−v1(t)λ3(t, a)
]
dt +

∫ T

0
Ū(t)

[
−

dλ2(t)
dt

+

(
µ + δ + p −

∫ ∞

0
β(a)s(t, a)da

)
λ2(t)

+v2(t)λ2(t) −
(
p + v2(t)

)
λ3(t, 0) +

∫ ∞

0
β(a)s(t, a)λ1(t, a)da

]
dt

+

∫ T

0
R̄(t)

[
−
∂λ3(t, a)

∂t
−
∂λ3(t, a)
∂a

+

(
µ + γ(a)

)
λ3(t, a) − γ(a)λ2(t)

]
dt

+

∫ T

0

(
B1h1(t)v1(t) + B2h2(t)v2(t)

)
dt, (3.18)
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where

S̄ (t) =

∫ ∞

0
s̄(t, a)da, and R̄(t) =

∫ ∞

0
r̄(t, a)da.

Keeping in mind Eqs (3.6), (3.8) and (3.10), we can write the inequality (3.18) as

0 ≤

∫ T

0

[ ∫ ∞

0

(
λ3(t, a) − λ1(t, a)

)
s(t, a)da + B1v1(t)

]
h1(t)dt +

∫ T

0

[(
λ3(t, 0) − λ2(t)

)
U(t)

+B2v2(t)
]
h2(t)dt, (3.19)

for all v1(t), v2(t) ∈ Vad. As the variation functions h1(t), h2(t) , 0 on Vad, thus the rest of the integrand
must be equal to zero. Hence

v1(t) =

∫ ∞
0

(
λ1(t, a) − λ3(t, a)

)
s(t, a)da

B1
,

and

v2(t) =

(
λ2(t) − λ3(t, 0)

)
U(t)

B2
.

By considering the lower and upper bounds of the control variables as well as the optimal values of the
state variables, we have

v?1 (t) = min
{
l1,max

{
0,

∫ ∞
0

(
λ1(t, a) − λ3(t, a)

)
s?(t, a)da

B1

}}
, (3.20)

and

v?2 (t) = min
{
l2,max

{
0,

(
λ2(t) − λ3(t, 0)

)
U?(t)

B2

}}
. (3.21)

Formulas developed in relations (3.20) and (3.21) are the required characterization of the optimal
controls.

By using these optimal value of the control variables, the desired optimal system can be written as

∂s(t, a)
∂t

+
∂s(t, a)
∂a

= −β(a)U(t)s(t, a) − µs(t, a) − v?1 (t)s(t, a), (3.22a)

dU(t)
dt

= U(t)
∫ ∞

0
β(a)s(t, a)da − (µ + δ + p + v?2 (t))U(t) +

∫ ∞

0
γ(a)r(t, a)da, (3.22b)

∂r(t, a)
∂t

+
∂r(t, a)
∂a

= −(µ + γ(a))r(t, a) + v?1 (t)s(t, a), (3.22c)

s(t, 0) = Λ, (3.22d)
r(t, 0) = (p + v?2 (t))U(t), (3.22e)
s(0, a) = s0(a), U(0) = U0 ≥ 0, r(0, a) = r0(a). (3.22f)
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4. Numerical simulations

In the previous section, we have presented analytically an optimal control problem keeping in view
some predetermined goals. In the present section, we will try to simulate both the optimal control and
without control systems and to compare the obtained results. The numerical method to be used will be
the finite difference method as the problem containing both ordinary and partial differential equations.
This method approximates the derivative by difference quotients and it approximates the solution at
each point of the domain. Let the maximum class-age is A and the maximum time is T both of which
are finite. The age and time directions are divided into equal space with the same step size ∆a = ∆t due
to together progression. Thus, all of the points in time and age directions can be computed as ak = k∆t
and tn = n∆t, respectively. Assume the M and N are the number of points to be incorporated in age
time directions so that A = M∆t and T = N∆t. The numerical method computes approximations to the
solutions at the mesh points:

sn
k ≈ s(ak, tn), Un ≈ U(tn), rn

k ≈ r(ak, tn).

Adopting the similar procedure presented in [30], system (3.22) will gives the following simulation
scheme

sn+1
k+1 =

sn
k

1 + (βkUn+1 + µ + vm+1
1 )∆t

,

Un+1 =
Un + ∆t

∑M
k=1 γkrn+1

k ∆t

1 + (µ + δ + p + vn+1
2 −

∑M
k=1 βksn+1

k ∆t)∆t
,

rn+1
k+1 =

rn
k + vn+1

1 sn+1
k

1 + (µ + γk)∆t
,

un+1
0 = S n+1

K∑
i=1

βiun+1
i ∆t,

sn+1
0 = Λ,

rn+1
0 = (p + vn+1

2 )Un+1,

s0
k = φ1k, U0 = U0, r0

k = ψ1k.

Using the same procedure, the schemes for adjoint system (3.13) and system without control (2.1)
are developed and then coded in MATLAB along with characterization of control variables defined in
(3.20) and (3.21). For simulation purpose, we assumed that ∆t = 0.05, maximum class-age a = 40
years and maximum time T for the control strategy is 40 days. Furthermore, the initial data related to
all classes were chosen according to assumption of the model. The values and justification of parameter
used in simulation is presented in Table 1. Besides, at initial stage of the control strategy we assumed
v1(t) = v2(t) = 0.
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Table 1. Parameters baseline values used in numerical simulation.

Parameters Values References
Λ 0.75 Assumed using [19]
µ 0.085 [19]
δ 0.00014 Calculated using [19]
p 0.0081 Assumed
l1 1 [31]
l2 1 [31]
B1 100 Assumed with the help of [31]
B2 150 Assumed
β(a) 0.05e−0.1a Assumed with the help of [23]
γ(a) e−0.1a Assumed

Figures 1 represent the dynamics of all classes with respect to class-age and time. Sub-figure
1a shows the density of susceptible population without control, whereas, Figure 1b shows the same
population density with control. Comparison reveal that there are more susceptible to heroin addiction
when the control was not implemented. As the control strategy was launched, the control shows his
effect and susceptible people tend to decrease. As a result, fewer people will tend to initiate the use
of heroin. Figure 1c is self-explanatory and depict that both the controls are effective for reducing the
number of heroin addicts in a community. Figures 1d and 1e show the recovered population and again
it is clear from the graphs that the recovered population tends to increase as we impose the control
strategy.

To understand the effectiveness of education control, in Figure 2 we have chosen some sample
curves (solution profiles) from the density function of the susceptible population at fixed time and
age. Figure 2a represents the solution profile of s(t, a) at fixed age a = 15. The figure shows that
although education campaign has reverse effect on young people at initial stages but with the passage
of time it will work. After 20 days of strategy, the population of young susceptible tends to decline and
finally there will be no susceptible whose age of susceptibility is between 15-22. Likewise, Figure 2b
represent the solution profile of those susceptible whose age of susceptibility is 30. Again this figure
suggest that the education campaign is much more effective in the long run. Similarly, figures 2c and
2d represent solution profiles of s(t, a) at fixed time t = 15 and 20, respectively. These figures also
indicate the effectiveness of awareness among susceptible. Again, these figures suggest that such type
of campaign should be launched for the long run to achieve the desired outcomes.

In the same way, we have plotted sample solution curves from r(t, a) at fixed age and time in Figures
3a-3d. These figures shows a much clear effect of both awareness and treatment. Further, it shows that
these control measures should be implemented in pairs; the former will control the susceptible people
and the later will recover the active heroin users. Finally, Figures 4a and 4b represent the dynamics of
the control variables v1(t) and v2(t), respectively.
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(a) Density of susceptible population without
control.

(b) Density of susceptible population with
control.
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(c) Heroin users with and without control. (d) Recovered population without control.

(e) Recovered population with control.

Figure 1. The plot shows the effectiveness of control strategy in all classes.
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(a) The plot shows solution profile of s(t, a) at
fixed class-ages a = 15 both with and without
control.
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(b) The plot shows solution profile of s(t, a) at
fixed class-ages a = 30 both with and without
control.
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(c) The plot shows solution profile of s(t, a) at
fixed time t = 15 both with and without control.
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(d) The plot shows solution profile of s(t, a) at
fixed time t = 30 both with and without control.

Figure 2. The plot shows solution profiles of susceptible population at fixed time and class-
age both with and without control.
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(a) The plot shows solution profile of r(t, a) at
fixed class-ages a = 15 both with and without
control.
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(b) The plot shows solution profile of r(t, a) at
fixed class-ages a = 30 both with and without
control.
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(c) The plot shows solution profile of r(t, a) at
fixed time t = 15 both with and without control.
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(d) The plot shows solution profile of r(t, a) at
fixed time t = 30 both with and without control.

Figure 3. The plot shows solution profiles of recovered population at fixed time and class-age
both with and without control.
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(a) Dynamics of education campaign v1(t).
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(b) Dynamics of treatment v2(t).

Figure 4. The figure represent the dynamics of control variables.
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5. Conclusion

In this manuscript, we have developed an age-structured heroin epidemic model with continuous
age-structure in susceptible and recovered classes using previously formulated models on the heroin
epidemic. Using two control variables and a suitable objective functional, we investigated a control
problem. Using the generalized maximum principle of Pontryagin’s type and the Gateaux derivative
rule, the authors presented an optimal control problem and characterized the optimal values of the
control variables. To compare the theoretical results, we presented some simulation. Simulation of the
model suggests that to control the use of heroin in a community, one must impose these two control
measures in combination.
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