### AIMS Mathematics

2021, Issue 2: 1332-1347. doi: 10.3934/math.2021083
Research article

# Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity

• Received: 10 September 2020 Accepted: 09 November 2020 Published: 17 November 2020
• MSC : 35R11, 35J60, 35J20

• In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-type equation $M\left(\,\,\displaystyle{\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\text{d}x\text{d}y}\right)(-\Delta)_{p}^{s} u+V(x)|u|^{p-2}u = \lambda f(x,u),\,\, \text{in}\,\,\mathbb{R}^N,$ where $0 \lt s \lt 1 \lt p \lt \infty$, $sp \lt N$, $\lambda \gt 0$ is a real parameter, $(-\Delta)_{p}^{s}$ is the fractional $p$-Laplacian operator, $V:\mathbb{R}^N\rightarrow\mathbb{R}^N$ is a potential function, $M$ is a Kirchhoff function, the nonlinearity $f:\mathbb{R}^N\times\mathbb{R}\rightarrow\mathbb{R}$ is a continuous function and just super-linear in a neighborhood of $u = 0$. By using an appropriate truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for the above equation, provided that $\lambda$ is sufficiently large. Our results extend and improve the previous ones in the literature.

Citation: Liu Gao, Chunfang Chen, Jianhua Chen, Chuanxi Zhu. Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity[J]. AIMS Mathematics, 2021, 6(2): 1332-1347. doi: 10.3934/math.2021083

### Related Papers:

• In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-type equation $M\left(\,\,\displaystyle{\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\text{d}x\text{d}y}\right)(-\Delta)_{p}^{s} u+V(x)|u|^{p-2}u = \lambda f(x,u),\,\, \text{in}\,\,\mathbb{R}^N,$ where $0 \lt s \lt 1 \lt p \lt \infty$, $sp \lt N$, $\lambda \gt 0$ is a real parameter, $(-\Delta)_{p}^{s}$ is the fractional $p$-Laplacian operator, $V:\mathbb{R}^N\rightarrow\mathbb{R}^N$ is a potential function, $M$ is a Kirchhoff function, the nonlinearity $f:\mathbb{R}^N\times\mathbb{R}\rightarrow\mathbb{R}$ is a continuous function and just super-linear in a neighborhood of $u = 0$. By using an appropriate truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for the above equation, provided that $\lambda$ is sufficiently large. Our results extend and improve the previous ones in the literature.

 [1] V. Ambrosio, R. Servadei, Supercritical fractional Kirchhoff type problems, Fract. Calc. Appl. Anal., 22 (2019), 1351-1377. [2] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differ. Equ., 255 (2013), 2340-2362. [3] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on $\mathbb{R}^N$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741. [4] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math., 4 (1983), 17-26. [5] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. [6] X. J. Chang, Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involoving the fractional Laplacian, J. Differ. Equ., 256 (2014), 479-494. [7] K. Cheng, Q. Gao, Sign-changing solutions for the stationary Kirchhoff problems involving the fractional laplacian in $\mathbb{R}^N$, Acta Math. Sci., 38 (2018), 1712-1730. [8] D. G. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794. [9] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 136 (2012), 521-573. [10] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2017), 645-660. [11] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Adv. Nonlinear Anal., 94 (2014), 156-170. [12] G. Z. Gu, X. H. Tang, The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity, Adv. Nonlinear Stud., 19 (2019), 779-795. [13] C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727. [14] H. Jin, W. B. Liu, Fractional Kirchhoff equation with a general critical nonlinearity, Appl. Math. Lett., 74 (2017), 140-146. [15] G. Kirchhoff, Vorlesungen Uber Mechanik, Teubner, Leipzig, 1883. [16] A. R. Li, J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3147-3158. [17] Q. Q. Li, K. M. Teng, X. Wu, Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations with critical or supercritical growth, Math. Methods Appl. Sci., 41 (2017), 1136-1144. [18] J. L. Lions, On some questions in boundary value problems of mathematical physics, In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, NorthHolland, Amsterdam, 1978. [19] G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equ., 257 (2014), 566-600. [20] G. Molica Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge Univ. Press., Cambridge, 2016. [21] D. Naimen, M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal., 186 (2019), 187-208. [22] N. Nyamoradi, L. I. Zaidan, Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations, Complex Var. Elliptic Equ., 63 (2017), 346-359. [23] R. C. Pei, Y. Zhang, J. H. Zhang, Ground state solutions for fractional p-Kirchhoff equation with subcritical and critical exponential growth, Bull. Malays. Math. Sci. Soc., 43 (2020), 355-377. [24] S. I. Pohozǎev, A certain class of quasilinear hyperbolic equations, Mat. Sb., 96 (1975), 152-166. [25] P. Pucci, M. Q. Xiang, B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differ. Equ., 54 (2015), 2785-2806. [26] P. Pucci, M. Q. Xiang, B. L. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian, Adv. Calc. Var., 12 (2019), 253-275. [27] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacia, Trans. Amer. Math. Soc., 367 (2015), 67-102. [28] J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^N$, Lecture Notes in Math., 665 (1978), 205-227. [29] M. Q. Xiang, B. L. Zhang, X. Y. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal., 120 (2015), 299-313. [30] M. Q. Xiang, B. L. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690- 709. [31] M. Q. Xiang, B. L. Zhang, D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Truding-Moser nonlinearity, Nonlinear Anal., 186 (2019), 74-98. [32] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. [33] J. Zhang, Z. L. Lou, Y. J. Ji, W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57-83.

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

0.882 0.9