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Abstract: In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-
type equation

M
("

R2N

|u(x) − u(y)|p

|x − y|N+sp dxdy
)

(−∆)s
pu + V(x)|u|p−2u = λ f (x, u), in RN ,

where 0 < s < 1 < p < ∞, sp < N, λ > 0 is a real parameter, (−∆)s
p is the fractional p-Laplacian

operator, V : RN → R+ is a potential function, M is a Kirchhoff function, the nonlinearity f : RN×R→

R is a continuous function and just super-linear in a neighborhood of u = 0. By using an appropriate
truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for
the above equation, provided that λ is sufficiently large. Our results extend and improve the previous
ones in the literature.

Keywords: fractional p-Laplacian; Kirchhoff equations; local nonlinearity; Moser iteration method;
truncation argument
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1. Introduction

In this paper, we investigate the existence of nontrivial solutions for Schrödinger-Kirchhoff type
equations involving the fractional p-Laplacian and local nonlinearity. More precisely, we consider the
following Kirchhoff-type equation

M
("

R2N

|u(x) − u(y)|p

|x − y|N+sp dxdy
)

(−∆)s
pu + V(x)|u|p−2u = λ f (x, u), in RN , (1.1)
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where 0 < s < 1 < p < ∞, sp < N, λ > 0 is a real parameter, (−∆)s
p is the fractional p-Laplacian

operator which, up to a normalization constant, may be defined as

(−∆)s
pφ(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|φ(x) − φ(y)|p−2 (φ(x) − φ(y))
|x − y|N+sp dy, ∀ x ∈ RN ,

along any φ ∈ C∞0 (RN), where Bε(x) := {y ∈ RN : |x − y| < ε}. In fact, many scholars have paid
more attention to the fractional and nonlocal operators in recent years. This type of operator occurs
naturally in many field of science, such as finance, continuum mechanics, free boundary obstacle
problems, population dynamics, plasma physics and anomalous diffusion. For more details on this
type of operator, we refer to [2, 5, 6] and the references therein. For the fractional Sobolev spaces and
the study of the fractional Laplacian by using variational methods, we refer the readers to [9, 20, 27].
In order to simplify our statements, we first suppose on the potential function V that
(V1) V ∈ C(RN) and there exists a constant V0 > 0 such that inf

x∈RN
V(x) ≥ V0;

(V2) there exists R > 0 such that

lim
|y|→∞

meas ({x ∈ BR(y) : V(x) ≤ d}) = 0 for any d ∈ R+.

Condition (V2) was originally from [3], it can be used to solve the problem of the lack of compactness in
the whole space RN . Moreover, the condition (V2) is weaker than the coercivity condition lim

|x|→∞
V(x) =

∞.
As we all know, Kirchhoff equations was first proposed by Kirchhoff in 1883 (see [15]), which was

related to the celebrated D’Alembert wave equation

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx
)
∂2u
∂x2 = f (x, u),

for free vibrations of elastic strings. Here, ρ is the mass density, P0 is the initial tension, h is the area
of the cross section, E is the Young modulus of the material and L is the length of the string.
Bernstein [4] and Pohozaev [24] were the early scholars devoted to study Kirchhoff equations. After
Lions [18] proposed an abstract framework for Kirchhoff problems, many scholars have studied
Kirchhoff equations by using variational methods. For example, we refer to [12, 19] for Kirchhoff

equations involving subcritical nonlinearities; we also collect some articles, see [17, 21] for Kirchhoff

equations involving critical and supercritical nonlinearities.
Recently, Fiscella and Valdinoci [11] proposed a stationary Kirchhoff type variational model, which

considered the nonlocal aspect of the tension arising from nonlocal measurements of fractional length
of the string. More precisely, they studied the following fractional Kirchhoff type problem involving
critical growthM

("
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy
)

(−∆)su = λ f (x, u) + |u|2
∗
s−2u, in Ω,

u = 0, in RN \Ω.

By combining a truncated technique with the mountain pass theorem, they obtained the existence of
nontrivial solutions for the above equation when λ is large enough. Afterwards, many scholars have
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studied the existence and multiplicity of nontrivial solutions, ground state solutions, sign-changing
solutions for fractional Kirchhoff type equations. For the subcritical case, Pucci et al. [25] obtained
the existence of multiple solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations
via the Ekeland variational principle and the mountain pass theorem. For the critical case,
Fiscella [10] provided the existence of two solutions for fractional Kirchhoff equation with singular
term and critical nonlinearity via variational methods. By using the concentration compactness
principle in fractional Sobolev spaces, Xiang et al. [30] established the existence and multiplicity of
solutions for a class of fractional p-Laplacian Kirchhoff type problems involving critical exponent.
Moreover, there are few results about the existence of solutions for fractional Kirchhoff problems
involving the supercritical term. Fortunately, Ambrosio and Servadei [1] first studied the existence of
nontrivial solutions for factional Kirchhoff problems with supercritical growth by using a truncation
argument, the mountain pass theorem and Moser iterative method. For more related results on
fractional Kirchhoff type equations, we refer the interested reader to [23, 26, 29, 31] and the
references therein.

However, many scholars usually supposed that the nonlinearity f (u) satisfies the growth condition
| f (u)| ≤ C(|u| + |u|q−1), q ∈ (p, p∗s) and the following conditions
(S 1) f (u)

|u|3 is an increasing function of u ∈ R \ {0};
(S 2) lim

|u|→+∞

F(u)
u4 = +∞;

or the Ambrosetti-Rabinowitz condition
(AR) there exists µ ∈ (p, p∗s) such that 0 < µF(u) ≤ f (u)u for all u ∈ R.
Indeed, under the above conditions, it is easy to obtain the existence and multiplicity of solutions for
fractional Kirchhoff type equations by using variational methods. For example, Cheng and Gao [7]
established the existence of least energy sign-changing solutions when f (u) satisfies (S 1) and (S 2).
Under the nonlinearity f (u) satisfies (AR) condition, Nyamoradi and Zaidan [22], they proved the
existence of nontrivial solutions. In addition, some scholars studied the existence of solutions for
fractional Kirchhoff type equations when f (u) satisfies the Berestycki-Lions type conditions, see for
instance [14, 33].

As far as we know, there are no papers dealing with the fractional Kirchhoff type equation with
local nonlinearity, which the nonlinearity f (u) is superlinear just in a neighborhood of u = 0. There is
no doubt that serious difficulties will be encountered, because there is no assumption about the
function f (u) at infinity. This difficulty makes the study of fractional Kirchhoff type equations
become more interesting and challenging. In order to overcome this difficulty, Li and Su [16] used a
truncation argument due to Costa and Wang (see [8]) to get the existence and multiplicity of solutions
for Kirchhoff type equations. In [13], Huang and Jia also obtained the existence of positive solutions
for quasilinear Schrödinger equations via the truncation argument in [8].

Motivated by the above works, the purpose of this paper is to give existence results for Eq (1.1).
To the best of our knowledge, the existence of solutions for fractional Kirchhoff equations with local
nonlinearity has not been studied yet. Before stating our result, we consider M : R+

0 → R
+
0 , R+

0 =

[0,+∞), is supposed to satisfy the following conditions:
(M1) M ∈ C(R+

0 ) and there exists m0 > 0 such that M(t) ≥ m0 for any t ∈ R+
0 ;

(M2) the function t 7→ M(t) is increasing;
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(M3) for each t1 ≥ t2 > 0, it holds

M(t1)
t1
−

M(t2)
t2
≤ m0

(
1
t1
−

1
t2

)
.

Moreover, we assume the following assumptions on f :
( f1) f ∈ C(RN × R,R), f (x, t) = 0 for all t ≤ 0 and there exists α ∈ (2p, p∗s) such that

lim sup
t→0+

f (x, t)
tα−1 < +∞;

( f2) there exists σ ∈ (2p, p∗s) and σ > α such that

lim inf
t→0+

F(x, t)
tσ

> 0;

( f3) there exists µ ∈ (2p, p∗s) such that

t f (x, t) ≥ µF(x, t) > 0 for t > 0 small,

where p∗s =
N p

N−sp and F(x, t) =
∫ t

0
f (x, s)ds.

In the following, let’s state our result.
Theorem 1.1. Suppose that (V1), (V2), (M1)–(M3) and ( f1)–( f3) are satisfied. Then there exists λ0 > 0
such that Eq (1.1) admits a nontrivial solution for all λ > λ0.

The energy functional associated with Eq (1.1) is given by

Iλ(u) =
1
p

[
M

("
R2N

|u(x) − u(y)|p

|x − y|N+sp dxdy
)

+

∫
RN

V(x)|u|pdx
]
− λ

∫
RN

F(x, u)dx.

Due to we assume that the nonlinearity f (x, u) is superlinear only in a neighborhood of u = 0, the
energy functional may be not well defined. Therefore, we can not directly use the variational method
to prove the existence of solutions. In order to prove Theorem 1.1, we will use a truncation argument,
which came from [8, 13, 16]. More precisely, we first show that the existence of nontrivial solutions
for the revised equation via the mountain pass theorem. By Moser iteration method and L∞-estimate,
we can obtain solution of revised equation, which is the solution of the original Eq (1.1) when λ is
sufficiently large. In addition, our assumptions on the nonlinearity f just in a neighborhood of the
origin, which are greatly relax. The results of this paper are new and can enrich the previous ones in
the literature.
Remark 1.2. It is worth mentioning that this paper is the first time to assume the nonlinearity f (x, u)
just in a neighborhood at u = 0 and discuss existence of solutions for fractional Kirchhoff-type
equations. Therefore, our results are new, and enrich the previous ones in the literature.

This paper is organized as follows. In Section 2, we recall some basic properties of the fractional
Sobolev spaces and introduce a truncation argument. In Section 3, we give the proof of Theorem 1.1.

2. Preliminaries

In this section, we first recall some basic results of the fractional Sobolev spaces. Let 0 < s < 1 <
p < ∞ be real numbers and N > sp. The fractional Sobolev space W s,p(RN) is given by

W s,p(RN) =
{
u ∈ Lp(RN) : [u]s,p < +∞

}
,
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where [u]s,p is the Gagliardo semi-norm, namely,

[u]s,p =

("
R2N

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p

and W s,p(RN) is equipped with the following norm

‖u‖W s,p(RN ) =
(
‖u‖Lp(RN ) + [u]p

s,p

) 1
p
.

It is well known that W s,p(RN) =
(
W s,p(RN), ‖ · ‖W s,p(RN )

)
is a uniformly convex Banach space.

Moreover, let p ∈ [1,∞) be a real number, Lp(RN ,V) denotes the Lebesgue space of real-valued
functions and equipped with the norm

‖u‖p,V =

( ∫
RN

V(x)|u|pdx
) 1

p

for all u ∈ Lp(RN ,V).

Under the condition (V1), we can know that Lp(RN ,V) = (Lp(RN ,V), ‖ · ‖p,V) is a uniformly convex
Banach space.

Now, let X denotes the completion of C∞0 (RN) in W s,p(RN) and endowed with the norm

‖u‖X =
(
[u]p

s,p + ‖u‖p
p,V

) 1
p
. (2.1)

According to Lemma 10 in the Appendix of [25], we also know that X = (X, ‖ · ‖X) is a uniformly
convex Banach space. Furthermore, X is a reflexive Banach space. The dual space of (X, ‖ · ‖X) is
denoted by (X∗, ‖ · ‖X∗).

Denote the best fractional Sobolev constant:

S ∗s,p = inf
u∈W s,p(RN )\{0}

"
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy( ∫
RN
|u(x)|p

∗
s dx

) p
p∗s

. (2.2)

Lemma 2.1. ([25]) Assume that V satisfies (V1). If r ∈ [p, p∗s], then the embeddings

X ↪→ W s,p(RN) ↪→ Lr(RN)

are continuous. Thus, there exists a constant Cr > 0 such that

‖u‖Lr(RN ) ≤ Cr‖u‖X for all u ∈ X. (2.3)

Moreover, if r ∈ [p, p∗s), then the embedding X ↪→↪→ Lr(BR) is compact for any R > 0.
Lemma 2.2. ([25]) Suppose that (V1) and (V2) are satisfied. Let r ∈ [p, p∗s) be a fixed exponent. If {un}

is a bounded sequence in X, then there exists u0 ∈ X ∩ Lr(RN) such that up to a subsequence,

un → u0 strongly in Lr(RN),

AIMS Mathematics Volume 6, Issue 2, 1332–1347.



1337

as n→ +∞, for all r ∈ [p, p∗s).
Next, we show that the definitions of (PS )c condition and the mountain pass theorem.

Definition 2.3. Let E ∈ C1(X,R). We say the E satisfies the (PS )c condition at level c ∈ R in X, if
any (PS )c sequence {un} ⊂ X, that is, E(un) → c, E′(un) → 0 in X∗, as n → ∞, admits a convergent
subsequence in X.
Theorem 2.4. ([32]) Let X be a real Banach space, suppose E ∈ C1(X,R) satisfies the (PS )c condition
with E(0) = 0. Moreover,
(i) there exist %, η > 0 such that E(u) ≥ η for all u ∈ X, with ‖u‖X = %,
(ii) there exists e ∈ X satisfying % < ‖e‖X such that E(e) < 0.

Define
Γ = {γ ∈ C1([0, 1], X) : γ(0) = 0, γ(1) = e}.

Then
c = inf

γ∈Γ
max
t∈[0,1]

E(γ(t))

is a critical value of E(u).
In order to prove Theorem 1.1, we need to modify and extend f to a suitable f̃ . The argument was

developed in [8, 13, 16]. Based on this, we make the following truncation argument.
According to ( f1) and ( f2), we know that there exist two positive constants A, B > 0 such that

F(x, t) ≤ Atα,

F(x, t) ≥ Btσ,

for 0 < t ≤ 2δ, where δ is a positive constant that satisfies 0 < δ < 1
2 and x ∈ RN .

For fixed δ > 0, let d(t) ∈ C1(R, [0, 1]) be an even cut-off function satisfying td′(t) ≤ 0,

d(t) =

1, if t ≤ δ,

0, if t ≥ 2δ,
(2.4)

and |td′(t)| ≤ 2
δ

for t ∈ R. Set

F̃(x, t) = d(t)F(x, t) + (1 − d(t))F∞(x, t), f̃ (x, t) = F̃′(x, t), (2.5)

where

F∞(x, t) =

Atα, if t > 0,
0, if t ≤ 0.

(2.6)

It follows from the definition of d(t) and ( f1)–( f3) that f̃ (x, t) has the following properties.
Lemma 2.5.([13, 16]) If ( f1)–( f3) are satisfied, then
(i) there exists a constant C > 0 such that

f̃ (x, t) ≤ Ctα−1, ∀ t > 0,

(ii) it hold that
0 < kF̃(x, t) ≤ t f̃ (x, t), ∀ t > 0 and k = min{α, µ}.
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Finally, we introduced the well-known Simon inequality as follows, which will be used later.
Lemma 2.6.([28]) There exist constants cp,Cp > 0 such that for any x, y ∈ RN , it holds

|x − y|p ≤


cp

(
|x|p−2x − |y|p−2y

)
(x − y), p ≥ 2,

Cp

[(
|x|p−2x − |y|p−2y

)
(x − y)

] p
2 (|x|p + |y|p)

(2−p)
2 , 1 < p < 2.

3. Proof the Theorem 1.1

In this section, we will complete the proof of Theorem 1.1. We first prove that the existence of
nontrivial solutions for the modified equation. More precisely, we consider the following fractional
Kirchhoff type equation

M
("

R2N

|u(x) − u(y)|p

|x − y|N+sp dxdy
)

(−∆)s
pu + V(x)|u|p−2u = λ f̃ (x, u), in RN , (3.1)

where f̃ is given by (2.5). The energy functional Ĩλ : X → R associated with Eq (3.1)

Ĩλ(u) =
1
p

(
M([u]p

s,p) + ‖u‖p
p,V

)
− λ

∫
RN

F̃(x, u)dx, u ∈ X, (3.2)

whereM(t) =
∫ t

0
M(τ)dτ. Under the assumptions of Theorem 1.1, by using the similar proof method

in [25], we can know that Ĩλ ∈ C1(X,R) and

〈Ĩ′λ(u), v〉 = M([u]p
s,p)
"
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dxdy

+

∫
RN

V(x)|u(x)|p−2u(x)v(x)dx − λ
∫
RN

f̃ (x, u(x))v(x)dx,
(3.3)

for any u, v ∈ X. Obviously, the critical points of the energy functional Ĩλ are exactly the weak solutions
of Eq (3.1).

In the following, let us first verify that Ĩλ has mountain pass geometry.
Lemma 3.1. Suppose that (V1), (V2), (M1) and ( f1)–( f3) are satisfied. Then there exist ζλ, ρλ > 0 such
that Ĩλ(u) ≥ ζλ for any u ∈ X, with ‖u‖X = ρλ.

Proof. By means of α > 2p and Lemma 2.1, there exists Cα > 0 such that ‖u‖Lα(RN ) ≤ Cα‖u‖X. From
(M1), (2.3), (3.2) and Lemma 2.5 (i), we get

Ĩλ(u) =
1
p

(
M([u]p

s,p) + ‖u‖p
p,V

)
− λ

∫
RN

F̃(x, u)dx

≥
1
p

(
m0[u]p

s,p + ‖u‖p
p,V

)
− λC‖u‖αLα(RN )

≥
1
p

min{m0, 1}‖u‖
p
X − λC1‖u‖αX.
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Since α > 2p, we can find ζλ, ρλ > 0 such that Ĩλ(u) ≥ ζλ for any u ∈ X, with ‖u‖X = ρλ. This completes
the proof. �

Lemma 3.2. Suppose that (V1), (V2), (M1)–(M3) and ( f1)–( f3) are satisfied. Then there exists ū ∈ X
such that Ĩλ(ū) < 0.
Proof. It follows from Lemma 2.5 (ii) that

F̃(x, t) ≥ Ctk for all t > 0. (3.4)

From (M1)–(M3), there exists a constant b > 0 such that

M(t) ≤ b(1 + t), ∀ t ≥ 0. (3.5)

For u ∈ C∞0 (RN), with ‖u‖X = 1. According to k > 2p, (3.4) and (3.5), we get

Ĩλ(tu) =
1
p

(
M([tu]p

s,p) + ‖tu‖p
p,V

)
− λ

∫
RN

F̃(x, tu)dx

≤
1
p

(
btp[u]p

s,p +
b
2

t2p[u]2p
s,p + tp‖u‖p

p,V

)
− λC1tk

∫
RN
|u|kdx

≤ C0t2p − λC1tk
∫
RN
|u|kdx.

Consequently, we can take ū = tu ∈ X such that Ĩλ(ū) < 0 for t sufficiently large. �
Now, similar to the proof of Lemma 6 in [25], we prove that Ĩλ satisfies (PS )c condition.

Lemma 3.3. Suppose that (V1), (V2), (M1)–(M3) and ( f1)–( f3) are satisfied. Then Ĩλ satisfies the
(PS )c condition.

Proof. Let {un}n∈N ⊂ X be a (PS )c sequence for the functional Ĩλ at level c ∈ R, that is,

Ĩλ(un)→ c, Ĩ′λ(un)→ 0, in X∗ as n→ ∞. (3.6)

Let us first prove that {un} is bounded in X. For this purpose, we assume that ‖un‖X → +∞, as
n→ ∞. By (M1)–(M3), one has

M(t) ≥
M(t) + m0

2
t, ∀ t ≥ 0. (3.7)

Hence, it follows from (M1), (3.2), (3.3), (3.7) and Lemma 2.5 (ii) that

1 + c + ‖un‖X ≥ Ĩλ(un) −
1
k
〈Ĩ′λ(un), un〉

≥
1
p


(
M([un]p

s,p) + m0

)
[un]p

s,p

2
+ ‖un‖

p
p,V

 − 1
k

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
≥

1
2p

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
−

1
k

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
≥

(
1

2p
−

1
k

) (
m0[un]p

s,p + ‖un‖
p
p,V

)
≥

(
1

2p
−

1
k

)
min{m0, 1}‖un‖

p
X,
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as n→ ∞. By k > 2p, we get a contradiction. Therefore, {un}n∈N is bounded in X.
Next, we prove that there exists u ∈ X such that un → u in X, as n → ∞. Combining Lemma 2.1-

Lemma 2.2 and Theorem A.1 in [32], there exist a subsequence, still denoted by {un} and a function u
in X such that 

un ⇀ u, in X,

un → u, in Lr(RN), r ∈ [p, p∗s),
un → u, a.e. in RN ,

|un| ≤ hr, a.e. in RN , for some hr ∈ Lr(RN),

(3.8)

as n→ ∞. In view of Lemma 2.5 (i) and Hölder’s inequality, we have∣∣∣∣∣ ∫
RN

[
f̃ (x, un) − f̃ (x, u)

]
(un − u)dx

∣∣∣∣∣ ≤ ∫
RN

∣∣∣∣[ f̃ (x, un) − f̃ (x, u)
]

(un − u)
∣∣∣∣ dx

≤ C
∫
RN

[
|un|

α−1 + |u|α−1
]
|un − u|dx

≤ C
(
‖un‖

α−1
Lα(RN ) + ‖u‖α−1

Lα(RN )

)
‖un − u‖Lα(RN ).

Then (3.8) implies that

lim
n→∞

∫
RN

[
f̃ (x, un) − f̃ (x, u)

]
(un − u)dx = 0. (3.9)

Now, let u ∈ X be fixed and denote by Bu the linear functional on X defined by

Bu(ϕ) :=
"
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy, ∀ϕ ∈ X. (3.10)

By Hölder’s inequality and the definition of Bu(ϕ), it is easy to verify that Bu is continuous and

|Bu(ϕ)| ≤ ‖u‖p−1
X ‖ϕ‖X for all ϕ ∈ X.

Obviously, Bu is bounded. Furthermore, according to
{
M([un]p

s,p) − M([u]p
s,p)

}
is bounded in R

and (3.8), we have
lim
n→∞

([
M([un]p

s,p)
]p−1
−

[
M([u]p

s,p)
]p−1

)
Bu(un − u) = 0. (3.11)

From un ⇀ u in X and Ĩ′λ(un) → 0 in X∗, we obtain 〈Ĩ′λ(un) − Ĩ′λ(u), un − u〉 → 0 as n → ∞. Therefore,
it follows from (3.3) and (3.8)–(3.11) that

o(1) = 〈Ĩ′λ(un) − Ĩ′λ(u), un − u〉

= M([un]p
s,p)Bun(un − u) − M([u]p

s,p)Bu(un − u)

+

∫
RN

V(x)(|un|
p−2un − |u|p−2u)(un − u)dx − λ

∫
RN

[
f̃ (x, un) − f̃ (x, u)

]
(un − u)dx

= M([un]p
s,p)[Bun(un − u) − Bu(un − u)] +

∫
RN

V(x)(|un|
p−2un − |u|p−2u)(un − u)dx + o(1),

(3.12)

as n→ ∞. By the fact that M([un]p
s,p)[Bun(un−u)−Bu(un−u)] ≥ 0 and V(x)(|un|

p−2un−|u|p−2u)(un−u) ≥ 0
for all n ∈ N by convexity. We get

lim
n→∞

∫
RN

V(x)
(
|un|

p−2un − |u|p−2u
)

(un − u)dx = 0, (3.13)
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lim
n→∞

[
Bun(un − u) − Bu(un − u)

]
= 0. (3.14)

Finally, we divided into two cases to prove ‖un − u‖X → 0, as n → ∞. To this aim, we first assume
that p ≥ 2. In view of Lemma 2.6, (3.10) and (3.14), we have

[un − u]p
s,p =

"
R2N

|(un − u)(x) − (un − u)(y)|p

|x − y|N+sp dxdy

≤ cp

"
R2N

[
|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))

]
· (un(x) − u(x) − un(y) + u(y))|x − y|−(N+sp)dxdy

= cp[Bun(un − u) − Bu(un − u)] = o(1),

(3.15)

as n→ ∞. By (V1), (3.13) and Lemma 2.6, we can show that

‖un − u‖p
p,V ≤ cp

∫
RN

V(x)
(
|un|

p−2un − |u|p−2u
)

(un − u)dx = o(1), (3.16)

as n→ ∞. Hence, combining (3.15) with (3.16), we have ‖un − u‖X → 0 as n→ ∞.
In the end, we assume that 1 < p < 2. Let us introduce the following elementary inequality

(a + b)
(2−p)

2 ≤ a
(2−p)

2 + b
(2−p)

2 , ∀ a, b ≥ 0, 1 < p < 2. (3.17)

From (3.8), there exists a constant l > 0 such that [un]s,p ≤ l for all n ∈ N. According to Hölder’s
inequality, (3.10), (3.14) and (3.17), we have

[un − u]p
s,p ≤ Cp

[
Bun(un − u) − Bu(un − u)

] p
2
(
[un]p

s,p + [u]p
s,p

) 2−p
2

≤ Cp
[
Bun(un − u) − Bu(un − u)

] p
2

(
[un]

p(2−p)
2

s,p + [u]
p(2−p)

2
s,p

)
≤ C

[
Bun(un − u) − Bu(un − u)

] p
2 = o(1),

as n→ ∞, where C = 2Cpl
p(2−p)

2 . Similarly, it follows from (3.8) that there exists a constant l∗ > 0 such
that ‖un‖p,V ≤ l∗ for all n ∈ N. Therefore, we conclude from Hölder’s inequality and (3.13) that

‖un − u‖p
p,V ≤ Ĉ

[ ∫
RN

V(x)
(
|un|

p−2un − |u|p−2u
)

(un − u)dx
] p

2

= o(1),

as n→ ∞, where Ĉ = 2Cpl
p(2−p)

2
∗ . Consequently, we have ‖un − u‖X → 0, as n→ ∞. This concludes the

proof of Lemma 3.3. �

Next, we prove that the existence of nontrivial solutions for Eq (3.1) via the mountain pass theorem.
Theorem 3.4. Suppose that (V1), (V2), (M1)–(M3) and ( f1)–( f3) are satisfied. Then Eq (3.1) has a
nontrivial solution.
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Proof. By Lemma 3.1 and Lemma 3.2, we know that the functional Ĩλ satisfies the geometry of the
mountain pass theorem. Moreover, in view of Lemma 3.3 and Ĩλ(0) = 0, we know that Ĩλ satisfies all
the condition of Theorem 2.4. Thus, we can see that Ĩλ has a critical value cλ and

cλ = inf
γ∈Γλ

max
t∈[0,1]

Ĩλ(γ(t))

where
Γλ = {γ ∈ C1([0, 1], X) : γ(0) = 0, γ(1) = ū},

and ū is given by Lemma 3.2. Therefore, the Eq (3.1) has a nontrivial solution uλ ∈ X with Ĩλ(uλ) =

cλ. �

From the truncation argument in Section 2, we know that if the solution uλ of Eq (3.1) satisfies
‖uλ‖L∞(RN ) ≤ δ, then uλ is a nontrivial solution of the original Eq (1.1). Before we do that, we will use
the following two lemmas to find an uniform boundedness of ‖uλ‖

p
X and the critical level cλ.

Lemma 3.5. Let uλ be a nontrivial solution of Eq (3.1). Then there exists a constant Π > 0 such that

‖uλ‖
p
X ≤ Πcλ.

Proof. By uλ is a critical point of Ĩλ, (M1), k > 2p, Lemma 2.5 (ii) and (3.7), we get

cλ = Ĩλ(uλ) −
1
k
〈Ĩ′λ(uλ), uλ〉

≥
1
p

(
M([un]p

s,p)[un]p
s,p

2
+

m0[un]p
s,p

2
+ ‖un‖

p
p,V

)
−

1
k

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
≥

1
2p

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
−

1
k

(
M([un]p

s,p)[un]p
s,p + ‖un‖

p
p,V

)
≥

(
1

2p
−

1
k

) (
m0[un]p

s,p + ‖un‖
p
p,V

)
≥

(
1

2p
−

1
k

)
min{m0, 1}‖un‖

p
X,

Thus, there exists Π > 0 is a constant such

‖uλ‖
p
X ≤ Πcλ.

The proof is completed. �

Lemma 3.6. There exists a constant Θ > 0 independent of λ such that

cλ ≤ Θλ−
p

k−p ,

for all sufficiently large λ.
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Proof. In view of (3.4), (3.5) and Theorem 3.4, we have

cλ ≤ max
t∈[0,1]

Ĩλ(tū)

= max
t∈[0,1]

[
1
p

(
M([tū]p

s,p) + ‖tū‖p
p,V

)
− λ

∫
RN

F̃(x, tū)dx
]

≤ max
t∈[0,1]

[
1
p

(
btp[ū]p

s,p +
b
2

t2p[ū]2p
s,p + tp‖ū‖p

p,V

)
− λCtk

∫
RN

ūkdx
]

≤ max
t∈[0,1]

[
tp

p

(
max{b, 1}‖ū‖p

X +
b
2
‖ū‖2p

X

)
− λCtk

∫
RN

ūkdx
]

≤ Θλ−
p

k−p ,

for all sufficiently large λ, where ū is given by Lemma 3.2 and Θ > 0 is a constant. �

Now, similar to the proof of Theorem 1.1 in [1], we use the Moser iteration technique to estimate
‖uλ‖L∞(RN ).
Lemma 3.7. If u ∈ X is a nontrivial solution of Eq (3.1), then u ∈ L∞(RN). In addition, there exists a
constant Ξ > 0 such that

‖u‖L∞(RN ) ≤ Ξλ
k−p∗s

(k−p)(p∗s−α) ,

for all λ sufficiently large.

Proof. Let L > 0, we define
ξ(u) = uup(β−1)

L ,

Φ(u) =

∫ u

0
(ξ′(t))

1
p dt,

and
ψ(u) =

up

p
,

where β > 1 and uL = min{u, L}. Hence, we conclude from the functions introduced above that

ψ′(x − y) (ξ(x) − ξ(y)) ≥ |Φ(x) − Φ(y)|p , ∀ x, y ∈ [0,+∞), (3.18)

Φ(u) ≥
1
β

uuβ−1
L , ∀ t ≥ 0. (3.19)

By the definition of ξ(u), we have
∣∣∣uup(β−1)

L

∣∣∣ ≤ Lp(β−1)u in RN . Thus, ξ(u) ∈ X. Considering ξ(u) as a test
function in (3.1), we get

M([u]p
s,p)
"
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(uup(β−1)
L (x) − uup(β−1)

L (y))
|x − y|N+sp dxdy

+

∫
RN

V(x)|u(x)|p−2u(x)uup(β−1)
L (x)dx = λ

∫
RN

f̃ (x, u(x))uup(β−1)
L (x)dx.

(3.20)

Now, we define
wL := uuβ−1

L . (3.21)
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From (2.2) that
S ∗s,p‖wL‖

p

Lp∗s (RN )
≤ [wL]p

s,p ≤ ‖wL‖
p
X.

Hence, it follows from (M1) and (3.18)–(3.21) that

M([u]p
s,p)
"
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(uup(β−1)
L (x) − uup(β−1)

L (y))
|x − y|N+sp dxdy

+

∫
RN

V(x)|u(x)|p−2u(x)uup(β−1)
L (x)dx

≥ m0[Φ(u)]p
s,p +

∫
RN

V(x)|u(x)|p−2u(x)uup(β−1)
L (x)dx

≥
m0

βp [wL]p
s,p +

∫
RN

V(x) |wL|
p dx

≥ min{
m0

βp , 1}‖wL‖
p
X

≥ min{
m0

βp , 1}S
∗
s,p‖wL‖

p

Lp∗s (RN )
.

(3.22)

Assume first that m0
βp < 1. According to Lemma 2.5 (i), (3.20)–(3.22) and Hölder’s inequality, we

have

‖wL‖
p

Lp∗s (RN )
≤

λβp

m0S ∗s,p

∫
RN

f̃ (x, u(x))uup(β−1)
L (x)dx

≤
λβp

m0S ∗s,p

∫
RN

uα−p (wL)p dx

≤
λβp

m0S ∗s,p

( ∫
RN

up∗s dx
) α−p

p∗s
( ∫

RN
w

pp∗s
p∗s−α+p

L dx
) p∗s−α+p

p∗s

.

(3.23)

Since α ∈ (2p, p∗s) and p > 1, by simple calculation, we get

p < ν∗s :=
pp∗s

p∗s − α + p
< p∗s. (3.24)

From Lemma 3.5 and Sobolev inequality, we obtain

‖u‖p

Lp∗s (RN )
≤

(
S ∗s,p

)−1
‖u‖p

X ≤
(
S ∗s,p

)−1
Πcλ. (3.25)

It follows from the definition of wL, we can show that uL ≤ u in RN . By (3.23)–(3.25), we have

‖wL‖
p

Lp∗s (RN )
≤
λβp

m0

(
S ∗s,p

)− αp (Πcλ)
α−p

p ‖wL‖
p

Lν
∗
s (RN )
≤ βpCλ

( ∫
RN
|uβν

∗
s |dx

) p
ν∗s

, (3.26)

where Cλ = λ
m0

(
S ∗s,p

)− αp (Πcλ)
α−p

p . Letting L→ +∞ in (3.26) and using the Fatou’s Lemma, we have

‖u‖Lβp∗s (RN ) ≤ β
1
βC

1
βp

λ ‖u‖Lβν∗s (RN ). (3.27)
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Thus, we get
u ∈ Lβν

∗
s (RN) ⇒ u ∈ Lβp∗s (RN). (3.28)

Taking ϑ =
p∗s
ν∗s
> 1 and β = ϑ in (3.27), we obtain

‖u‖Lϑp∗s (RN ) ≤ ϑ
1
ϑC

1
ϑp

λ ‖u‖Lp∗s (RN ). (3.29)

Taking β = ϑ2 in (3.27), we get

‖u‖Lϑ2 p∗s (RN ) ≤
(
ϑ2

) 1
ϑ2 C

1
ϑ2 p

λ ‖u‖Lϑp∗s (RN ). (3.30)

Combining (3.29) with (3.30), one has

‖u‖Lϑ2 p∗s (RN ) ≤ ϑ

(
1
ϑ+ 2

ϑ2

)
C

1
p

(
1
ϑ+ 1

ϑ2

)
λ ‖u‖Lp∗s (RN ). (3.31)

We proceed the i times iterations, by taking β = ϑi, i = 1, 2, . . . ,. Then, by letting i→ ∞, we have

‖u‖L∞(RN ) ≤ β
β

(β−1)2 C
1

p(β−1)

λ ‖u‖Lp∗s (RN ). (3.32)

Next, we assume that m0
βp ≥ 1. Similarly, we get

‖u‖L∞(RN ) ≤ C
1

p(β−1)

λ ‖u‖Lp∗s (RN ). (3.33)

Therefore, by u ∈ Lp∗s (RN), we have u ∈ L∞(RN).
Finally, by employing (3.32), (3.33), Lemma 3.6 and the Sobolev inequality, there exists a constant

Ξ > 0 such that
‖u‖L∞(RN ) ≤ Ξλ

k−p∗s
(k−p)(p∗s−α) ,

for all sufficiently large λ. The lemma is now proved. �

Proof of Theorem 1.1. Since k, α ∈ (2p, p∗s), we obtain

k − p∗s
(k − p)(p∗s − α)

< 0. (3.34)

Hence, in view of (3.34) and Lemma 3.7, there exists λ0 > 0 such that

‖uλ‖L∞(RN ) ≤ δ,

for all λ > λ0, where δ is fixed in (2.4). Therefore, uλ is a nontrivial solution of Eq (1.1) for λ > λ0. �

4. Conclusions

In this paper, we have considered a class of fractional Kirchhoff type equation. Under suitable
assumptions on V and M, using a truncation argument and the mountain pass theorem, we have
established the existence of nontrivial solutions. It is expected that the results proved in this paper
may be starting point further research in this field.
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