Research article

Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function

  • Received: 04 October 2020 Accepted: 12 November 2020 Published: 17 November 2020
  • MSC : 01A55, 11M06, 11M35, 30-02, 30D10, 30D30, 30E20

  • We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens de Haan [4] and Gradshteyn and Ryzhik [5].

    Citation: Robert Reynolds, Allan Stauffer. Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function[J]. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082

    Related Papers:

  • We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens de Haan [4] and Gradshteyn and Ryzhik [5].
    加载中


    [1] F. Oberhettinger, Tables of Fourier Transforms and Fourier Transforms of Distributions, 1st ed.; Springer-Verlag, Berlin Heidelberg, 1990.
    [2] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, 1982.
    [3] D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke, V. H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007.
    [4] D. Bierens de Haan, Nouvelles Tables d'intégrales définies, Amsterdam, 1867
    [5] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Ed, Academic Press, USA, 2000.
    [6] R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples, International Mathematical Forum, 15 (2020), 235-244.

    © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
  • Reader Comments
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(23) PDF downloads(5) Cited by()

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog