
AIMS Mathematics, 2021, 6(1): 296303. doi: 10.3934/math.2021018
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Necessary and sufficient conditions on the Schur convexity of a bivariate mean
1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China
2 College of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
3 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China
Received: , Accepted: , Published:
References
1. Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653663.
2. C. R. Fu, D. S. Wang, H. N. Shi, Schurconvexity for a mean of two variables with three parameters, Filomat, 32 (2018), 66436651.
3. L. L. Fu, B. Y. Xi, H. M. Srivastava, Schurconvexity of the generalized Heronian means involving two positive numbers, Taiwanese J. Math., 15 (2011), 27212731.
4. J. C. Kuang, Applied inequalities (Chang Yong Bu Deng Shi), 4 Eds., Shandong Press of Science and Technology, Ji'nan, China, 2010. (Chinese)
5. A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., Springer Verlag, New York/Dordrecht/Heidelberg/London, 2011.
6. F. Qi, A note on Schurconvexity of extended mean values, Rocky Mountain J. Math., 35 (2005), 17871793.
7. F. Qi, J. Sándor, S. S. Dragomir, A. Sofo, Notes on the Schurconvexity of the extended mean values, Taiwanese J. Math., 9 (2005), 411420.
8. F. Qi, X. T. Shi, M. Mahmoud, F. F. Liu, Schurconvexity of the CatalanQi function related to the Catalan numbers, Tbilisi Math. J., 9 (2016), 141150.
9. H. N. Shi, Y. M. Jiang, W. D. Jiang, Schurconvexity and Schurgeometrically concavity of Gini mean, Comput. Math. Appl., 57 (2009), 266274.
10. H. N. Shi, B. Mihaly, S. H. Wu, D. M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., 2008 (2009). Available from: https://doi.org/10.1155/2008/879273.
11. H. N. Shi, S. H. Wu, F. Qi, An alternative note on the Schurconvexity of the extended mean values, Math. Inequal. Appl., 9 (2006), 219224.
12. J. Sun, Z. L. Sun, B. Y. Xi, F. Qi, Schurgeometric and Schurharmonic convexity of an integral mean for convex functions, Turkish J. Anal. Number Theory, 3 (2015), 8789.
13. B. Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
14. Y. Wu, F. Qi, Schurharmonic convexity for differences of some means, Analysis (Munich), 32 (2012), 263270.
15. Y. Wu, F. Qi, H. N. Shi, Schurharmonic convexity for differences of some special means in two variables, J. Math. Inequal., 8 (2014), 321330.
16. B. Y. Xi, D. D. Gao, T. Zhang, B. N. Guo, F. Qi, Shannon type inequalities for Kapur's entropy, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7010022.
17. B. Y. Xi, Y. Wu, H. N. Shi, F. Qi, Generalizations of several inequalities related to multivariate geometric means, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7060552.
18. W. F. Xia, Y. M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 11031112.
19. H. P. Yin, H. N. Shi, F. Qi, On Schur mpower convexity for ratios of some means, J. Math. Inequal., 9 (2015), 145153.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)