
AIMS Mathematics, 2020, 5(6): 73877401. doi: 10.3934/math.2020473
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of timevarying delays
School of Mathematics and Statistics, Changsha University of Science and Technology; Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha 410114, China
Received: , Accepted: , Published:
References
1. W. Li, L. Huang, J. Ji, Globally exponentially stable periodic solution in a general delayed predatorprey model under discontinuous prey control strategy, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 26392664.
2. T. Chen, L. Huang, P. Yu, et al. Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal. Real World Appl., 41 (2018), 82106.
3. C. Huang, S. Wen, M. Li, et al. An empirical evaluation of the influential nodes for stock market network: Chinese A shares case, Finance Research Letters, (2020), 101517. Available from: https://doi.org/10.1016/j.frl.2020.101517.
4. F. Karim, S. Chauhan, J. Dhar, On the comparative analysis of linear and nonlinear business cycle model: Effect on system dynamics, economy and policy making in general, Quantit. Finance Econ., 4 (2020), 172203.
5. X. Yang, S. Wen, Z. Liu, et al. Dynamic properties of foreign exchange complex network, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7090832.
6. F. Wen, Y. Yuan, W. Zhou, Crossshareholding networks and stock price synchronicity: Evidence from China, Int. J. Fin. Econ., (2020). Available from: https://doi.org/10.1002/ijfe.1828.
7. C. Huang, Y. Tan, Global behavior of a reactiondiffusion model with time delay and Dirichlet condition, J. Diff. Equations, (2020). Available from: https://doi.org/10.1016/j.jde.2020.08.008.
8. J. Cao, F. Wen, The impact of the CrossShareholding network on extreme price movements: Evidence from China, J. Risk, 22 (2019), 79102.
9. L. Huang, H. Ma, J. Wang, et al. Global dynamics of a Filippov plant disease model with an economic threshold of infectedsusceptible ratio, J. Appl. Anal. Comput., 10 (2020), 115.
10. Z. Ye, C. Hu, L. He, et al. The dynamic timefrequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis, Energy J., 41 (2020). Available from: https://doi.org/10.5547/01956574.41.5.fwen.
11. Y. Tan, Dynamics analysis of MackeyGlass model with two variable delays, Math. Biosci. Eng., 17 (2020), 45134526.
12. H. Hu, X. Yuan, L. Huang, et al. Global dynamics of an sirs model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 57295749.
13. C. Huang, X. Long, L. Huang, et al. Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canad. Math. Bull., 63 (2020), 405422.
14. Q. Cao, X. Guo, Antiperiodic dynamics on highorder inertial Hopfield neural networks involving timevarying delays, AIMS Mathematics, 5 (2020), 54025421.
15. C. Huang, X. Zhao, J. Cao, et al. Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, (2020). Available from: https://doi.org/10.1088/13616544/abab4e.
16. C. Huang, Y. Qiao, L. Huang, et al. Dynamical behaviors of a foodchain model with stage structure and time delays, Adv. Difference Equ., 2018 (2018), 126.
17. C. Song, S. Fei, J. Cao, et al. Robust synchronization of fractionalorder uncertain chaotic systems based on output feedback sliding mode control, Mathematics, 7 (2019). Available from: https://doi.org/10.3390/math7070599.
18. L. Berezansky, E. Braverman, A note on stability of MackeyGlass equations with two delays, J. Math. Anal. Appl., 450 (2017), 12081228.
19. C. Huang, X. Long, J. Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 60936102.
20. C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multiproportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S, (2020). Available from: https://doi.org/10.3934/dcdss.2020372.
21. W. Tang, J. Zhang, Symmetric integrators based on continuousstage RungeKuttaNystrom methods for reversible systems, Appl. Math. Comput., 361 (2019), 112.
22. V. Volttera, Variazioni e fluttuazioni del numerou d'individui in specie animali conviventi, R. Comitato Talassografico Italiano, Memoria, 131 (1927), 1142.
23. C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Mathematics, 5 (2020), 33783390.
24. X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of timevarying delays, Appl. Math. Lett., 100 (2020), 106027.
25. L. Berezansky, E. Braverman, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Model., 34 (2010), 14051417.
26. V. H. Le, Global asymptotic behaviour of positive solutions to a nonautonomous Nicholson's blowflies model with delays, J. Biol. Dyn., 8 (2014), 135144.
27. B. Liu, Global exponential stability of positive periodic solutions for a delayed Nicholson's blowflies model, J. Math. Anal. Appl., 412 (2014), 212221.
28. F. Liu, L. Feng, V. Anh, et al. Unstructuredmesh Galerkin finite element method for the twodimensional multiterm timespace fractional BlochTorrey equations on irregular convex domains, Comput. Math. Appl., 78 (2019), 16371650.
29. X. Chen, C. Shi, Permanence of a Nicholson's blowflies model with feedback control and multiple timevarying delays, Chinese Quart. J. Math., 1 (2015), 153158.
30. B. Liu, New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model, Ann. Polon. Math., 113 (2015), 191208.
31. S. Zhou, Y. Jiang, Finite volume methods for Ndimensional time fractional FokkerPlanck equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 31673186.
32. T. S. Doan, V. H. Le, T. A. Trinh, Global attractivity of positive periodic solution of a delayed Nicholson model with nonlinear densitydependent mortality term, Electron. J. Qual. Theory Differ. Equ., 8 (2019), 121.
33. Z. Long, Exponential convergence of a nonautonomous Nicholson's blowflies model with an oscillating death rate, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 17.
34. L. Berezansky, E. Braverman, On exponential stability of a linear delay differential equation with an oscillating coefficient, Appl. Math. Lett., 22 (2009), 18331837.
35. J. Shao, Pseudo almost periodic solutions for a LasotaWazewska model with an oscillating death rate, Appl. Math. Lett., 43 (2015), 9095.
36. Q. Cao, X. Long, New convergence on inertial neural networks with timevarying delays and continuously distributed delays, AIMS Mathematics, 5 (2020), 59555968.
37. B. Liu, Global stability of a class of Nicholson's blowflies model with patch structure and multiple timevarying delays, Nonlinear Anal. Real World Appl., 11 (2010), 25572562.
38. G. Yang, Dynamical behaviors on a delay differential neoclassical growth model with patch structure, Math. Methods Appl. Sci., 41 (2018), 38563867.
39. Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020). Available from: https://doi.org/10.1016/j.aml.2020.106340.
40. Y. Xu, Q. Cao, Global asymptotic stability for a nonlinear densitydependent mortality Nicholson's blowflies system involving multiple pairs of timevarying delays, Adv. Difference Equ., 2020 (2020), 114.
41. H. Zhang, Q. Cao, H. Yang, Asymptotically almost periodic dynamics on delayed Nicholsontype system involving patch structure, J. Inequal. Appl., 2020 (2020). Available from: https://doi.org/10.1186/s13660020023660.
42. C. Qian, Y. Hu, Novel stability criteria on nonlinear densitydependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), 118.
43. Q. Cao, G. Wang, H. Zhang, et al. New results on global asymptotic stability for a nonlinear densitydependent mortality Nicholson's blowflies model with multiple pairs of timevarying delays, J. Inequal. Appl., 2020 (2020), 112.
44. H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 1995.
45. J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, SpringerVerlag, New York, 1993.
46. W. Wang, W. Chen, Stochastic Nicholsontype delay system with regime switching, Systems Control Lett., 136 (2020), 104603.
47. W. Wang, Positive periodic solutions of delayed Nicholson's blowflies models with a nonlinear densitydependent mortality term, Appl. Math. Model., 36 (2012), 47084713.
48. C. Wang, R. P. Agarwal, S. Rathinasamy, Almost periodic oscillations for delay impulsive stochastic Nicholson's blowflies timescale model, Comput. Appl. Math., 37 (2018), 30053026.
49. C. Wang, Existence and exponential stability of piecewise meansquare almost periodic solutions for impulsive stochastic Nicholson's blowflies model on time scales, Appl. Math. Comput., 248 (2014), 101112.
50. Z. Cai, J. Huang, L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Amer. Math. Soc., 146 (2018), 46674682.
51. C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear densitydependent mortality term, Pure Appl. Anal., 18 (2019), 33373349.
52. H. Hu, T. Yi, X. Zou, On spatialtemporal dynamics of a FisherKPP equation with a shifting environment, Proc. Amer. Math. Soc., 148 (2020), 213221.
53. H. Hu, X. Zou, Existence of an extinction wave in the Fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 145 (2017), 47634771.
54. J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear systems of nodesaddle type, J. Math. Anal. Appl., 469 (2019), 405427.
55. J. Wang, C. Huang, L. Huang, Discontinuityinduced limit cycles in a general planar piecewise linear system of saddlefocus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162178.
56. R. Wei, J. Cao, C. Huang, Lagrange exponential stability of quaternionvalued memristive neural networks with time delays, Math. Methods Appl. Sci., 43 (2020), 72697291.
57. C. Huang, H. Zhang, J. Cao, et al. Stability and hopf bifurcation of a delayed preypredator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091.
58. C. Huang, J. Wang, L. Huang, New results on asymptotically almost periodicity of delayed Nicholsontype system involving patch structure, Electron. J. Differential Equations, 2020 (2020), 117.
59. C. Huang, J. Cao, F. Wen, et al. Stability analysis of SIR model with distributed delay on complex networks, Plos One, 11 (2016), 122.
60. C. Huang, L. Liu, Boundedness of multilinear singular integral operator with nonsmooth kernels and mean oscillation, Quaest. Math., 40 (2017), 295312.
61. X. Zhang, H. Hu, Convergence in a system of critical neutral functional differential equations, App. Math. Lett., 107 (2020). Available from: https://doi.org/10.1016/j.aml.2020.106385.
62. C. Huang, S. Wen, L. Huang, Dynamics of antiperiodic solutions on shunting inhibitory cellular neural networks with multi proportional delays, Neurocomputing, 357 (2019), 4752.
63. H. Hu, L. Liu, Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hormander's condition, Math. Notes, 101 (2017), 830840.
64. J. Wang, S. He, L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of nodefocus or nodecenter type, Internat. J. Bifur. Chaos Appl. Sci. Engrg., (2020). Available from: https://doi.org/10.1142/S0218127420501606.
65. C. Huang, Z. Yang, T. Yi, et al. On the basins of attraction for a class of delay differential equations with nonmonotone bistable nonlinearities, J. Differential Equations, 256 (2014), 21012114.
66. J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Difference Equ., 2020 (2020), 112.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)