
AIMS Mathematics, 2020, 5(6): 71757190. doi: 10.3934/math.2020459
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A nonlocal boundary value problems for hybrid ϕCaputo fractional integrodifferential equations
1 College of Science, Tianjin University of Technology, Tianjin 300384, China
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Received: , Accepted: , Published:
Special Issues: Nonlinear Differential Equations and Applications
References
1. B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equation, Nonlinear Anal. Hybrid Syst., 4 (2010), 414424.
2. Y. Zhao, S. Sun, Z. Han, et al. Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 13121324.
3. S. Sun, Y. Zhao, Z. Han, et al. The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 49614967.
4. B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809.
5. B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclusions, Topol. Methods Nonlinar Anal., 44 (2014), 229238.
6. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, Sci. World J., 2014 (2014), 426438.
7. K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ., 2015 (2015), 183.
8. B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integrodifferential equations, Acta Math. Sci., 36 (2016), 16311640.
9. Z. Ullah, A. Ali, R. A. Khan, et al. Existence results to a class of hybrid fractional differential equations, Matriks Sains Mat. (MSMK), 1 (2018), 1317.
10. M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fractional hybrid differential inclusion with CaputoHadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163.
11. Z. Baitiche, K. Guerbati, M. Benchohra, et al. Boundary value problems for Hybrid Caputo fractional differential equations, Mathematics, 7 (2019), 111.
12. K. Zhang, J. Wang, W. Ma, Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Funct. Space., 2018 (2018), 110.
13. J. Jiang, D. O'Regan, J. Xu, et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 118.
14. J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2015), 8590.
15. K. Zhang, Z. Fu, Solutions for a class of Hadamard fractional boundary value problems with signchanging nonlinearity, J. Funct. Space., 2019 (2019), 17.
16. S. NageswaraRao, M. Singh, M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with pLaplacian operator, Bound. Value Probl., 2020 (2020), 125.
17. Z. Baitiche, C. Derbazi, On the solvability of a fractional hybrid differential equation of hadamard type with dirichlet boundary conditions in Banach algebras, Commun. Optim. Theory, 2020 (2020), 9.
18. M. Jamil, R. A. Khan, K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integrodifferential equations, Bound. Value Probl., 2019 (2019), 77.
19. R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460481.
20. R. Almeida, A. B. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the ψCaputo derivative and their applications, Math. Methods Appl. Sci., 2019. Available from: http://doi.org/10.1002/mma.5678.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)