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1. Introduction

Hybrid differential equations have been considered more important and served as special cases of
dynamical systems. Dhage and Lakshmikantham [1] were the first to study ordinary hybrid differential
equation and studied the existence of solutions for this boundary value problem. In recent years, with
the wide study of fractional differential equations, the theory of hybrid fractional differential equations
were also studied by several researchers, see [2–10] and the references therein.

Zhao et al. [2] studied existence and uniqueness results for the following hybrid differential
equations involving Riemann-Liouville fractional derivative

Dq
0+

( x(t)
f (t, x(t))

)
= g(t, x(t)), a.e.t ∈ J = [0,T ]

x(0) = 0,

where 0 < q < 1, f ∈ C(J × R→ R\{0}) and g ∈ C(J × R,R).
Zidane Baitiche et al. [11] considered the following boundary value problem of nonlinear fractional
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hybrid differential equations involving Caputo’s derivative

CDα
0+

( x(t)
f (t, x(µ(t)))

)
= g(t, x(µ(t))), t ∈ I = [0, 1]

a
[ x(t)

f (t, x(µ(t)))

]∣∣∣∣∣
t=0

+ b
[ x(t)

f (t, x(µ(t)))

]∣∣∣∣∣
t=1

= c,

where 0 < α ≤ 1,C Dα
0+ is the Caputo fractional derivative. f ∈ C(I × R→ R\{0}), g ∈ C(I × R,R).

As we all known, the hadamard fractional differential equations are also popular in the literature,
see [12–16], so some authors began to study the theory of fractional hybrid differential equation of
hadamard type.

Zidane Baitiche et al. [17] studied the existence of solutions for fractional hybrid differential
equation of hadamard type with dirichlet boundary conditions

HDα
( x(t)

f (t, x(t))

)
= g(t, x(t)), 1 < t < e, 1 < α ≤ 2,

x(1) = 0, x(e) = 0,

where 1 < α ≤ 2, HDα is the Hadamard fractional derivative, f ∈ C([1, e] × R → R\{0}) and g ∈
C([1, e] × R,R).

In [18], M. Jamil et al. discussed the existence result for the boundary value problem of hybrid
fractional integro-differential equations involving Caputo’s derivative given by

CDα
(CDωu(t) −

∑m
i=1 Iβi fi(t, u(t))

g(t, u(t))

)
= h(t, u(t), Iγu(t)), t ∈ J = [0, 1],

u(0) = 0, Dωu(0) = 0, u(1) = δu(η), 0 < δ < 1, 0 < η < 1,

where CDα is the Caputo fractional derivative of order α, CDω is the Caputo fractional derivative of
order ω, 0 < α ≤ 1, 1 < ω ≤ 2.

In order to analyze fractional differential equations in a generic way, a fractional derivative with
respect to another function called ϕ-Caputo derivative was proposed [19].

By mixing idea of the above works, we derived an existence result for the nonlocal boundary value
problems of hybrid ϕ-Caputo fractional integro-differential equations

CDα ϕ
(CDβ ϕu(t) −

∑m
i=1 Iωi ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t))

g(t, u(t), Iγ1 ϕu(t), · · ·, Iγp ϕu(t))

)
= h(t, u(t)), t ∈ J = [0, 1], (1.1)

u(0) = 0, CDβ ϕu(0) = 0, u(1) =

k∑
j=1

δ ju(ξ j), (1.2)

where 0 < α ≤ 1, 1 < β ≤ 2, CDα ϕ is the ϕ-Caputo fractional derivative of order α, CDβ ϕ is
the ϕ-Caputo fractional derivative of order β, the function ϕ : [0, 1] → R is a strictly increasing
function such that ϕ ∈ C2[0, 1] with ϕ′(x) > 0 for all x ∈ [0, 1], Iµ ϕ denote the ϕ-Riemann-Liouville
fractional integral of order µ, g ∈ C(J × Rp+1,R\{0}), h ∈ C(J × R,R) and fi ∈ C(J × Rn+1,R) with
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fi(0, 0, · · ·, 0︸  ︷︷  ︸
n+1

) = 0, wi > 0, i = 1, 2, · · ·,m, µ1, · · ·, µn > 0 and γ1, · · ·, γp > 0, 0 < δ j < 1, j =

1, 2, · · ·, k, 0 < ξ1 < ξ2 < · · · < ξk < 1.
It is notable that the fractional hybrid integro-differential equation presented in this paper is the

novel in the sense that the fractional derivative with respect to another function called ϕ-Caputo
fractional derivative. Note that the hybrid fractional integro-differential equations involving Caputo’s
derivative in [18] is a special case of our hybrid ϕ-Caputo fractional integro-differential equations
with ϕ(t) = t. Moreover, all dependent functions fi and g in our paper are in the form of multi-term.
Furthermore, our problem is more general than the work in [8], as we consider the problem with
multi-point boundary conditions, while the authors in [8] only investigated two-point boundary
condition.

The organization of this work is as follows. Section 2 contains some preliminary facts that we
need in the sequel. In section 3, we present the solution for the hybrid fractional integro-differential
equation (1.1), (1.2) and then prove our main existence results. Finally, we illustrate the obtained
results by an example.

2. The preliminary lemmas

In the following and throughtout the text, a > 0 is a real, x : [a, b] → R an integrable function and
ϕ ∈ C2[a, b] an increasing function such that with ϕ′(t) , 0 for all t ∈ [a, b].

Definition 2.1 The ϕ-Riemann-Liouville fractional integral of x of order α is defined as follows

Iα ϕ
a+ x(t) :=

1
Γ(α)

∫ t

a
ϕ′(s)(ϕ(t) − ϕ(s))α−1x(s)ds.

Definition 2.2 The ϕ-Riemann-Liouville fractional derivative of x of order α is defined as follows

Dα ϕ
a+ x(t) :=

( 1
ϕ′(t)

d
dt

)n

In−α ϕ
a+ x(t) =

1
Γ(n − α)

( 1
ϕ′(t)

d
dt

)n ∫ t

a
ϕ′(s)(ϕ(t) − ϕ(s))n−α−1x(s)ds,

here n = [α] + 1.
Remark 2.1 Let α, β > 0, then the relation holds

Iα ϕ
a+ Iβ ϕa+ x(t) = Iα+β ϕ

a+ x(t).

Definition 2.3 Let α > 0 and x ∈ Cn−1[a, b], the ϕ-Caputo fractional derivative of x of order α is
defined as follows

CDα ϕ
a+ x(t) := Dα ϕ

a+

[
x(t) −

n−1∑
k=0

x[k]
ϕ (a)
k!

(ϕ(t) − ϕ(a))k
]
, n = [α] + 1 for α < N, n = α for α ∈ N,

where x[k]
ϕ (t) :=

( 1
ϕ′(t)

d
dt

)k

x(t).

Theorem 2.1 [20] Let x : [a, b]→ R. The following results hold:
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1. If x ∈ C[a, b], then CDα ϕ
a+ Iα ϕ

a+ x(t) = x(t);
2. If x ∈ Cn−1[a, b], then

Iα ϕ C
a+ Dα ϕ

a+ x(t) = x(t) −
n−1∑
k=0

x[k]
ϕ (a)
k!

(ϕ(t) − ϕ(a))k.

Lemma 2.2 [18] Let S be a nonempty, convex, closed, and bounded set such that S ⊆ E, and let
A : E → E and B : S → E be two operators which satisfy the following :
(H1) A is contraction;
(H2) B is compact and continuous, and
(H3) u = Au + Bv, ∀v ∈ S ⇒ u ∈ S .

Then there exists a solution of the operator equation u = Au + Bu.
Let E = C(J,R) be a Banach space equipped with the norm

‖u‖ = sup
t∈J
|u(t)| and (uv)(t) = u(t)v(t), ∀ t ∈ J.

Then E is a Banach algebra with the above norm and multiplication.

3. Main results

Lemma 3.1 Suppose that α, β, ωi, i = 1, 2, · · ·,m, γi, i = 1, 2, · · ·, p, µi, i = 1, 2, · · ·, n, δ j, ξ j, j =

1, 2, · · ·, k and functions g, h, fi, i = 1, 2, · · ·,m satisfy problem (1.1), (1.2). Then the unique solution of
(1.1), (1.2) is given by

u(t) =
∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t))

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))[∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(1, u(1), Iµ1 ϕu(1), · · ·, Iµn ϕu(1))

−
k∑

j=1
δ j

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

−
k∑

j=1
δ j

m∑
i=1

Iωi+β ϕ fi(ξ j, u(ξ j), Iµ1 ϕu(ξ j), · · ·, Iµn ϕu(ξ j))
]
,

(3.1)

AIMS Mathematics Volume 5, Issue 6, 7175–7190.



7179

where
Iωi+β ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t))
=

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds;

Iωi+β ϕ fi(1, u(1), Iµ1 ϕu(1), · · ·, Iµn ϕu(1))
=

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds;

Iωi+β ϕ fi(ξ j, u(ξ j), Iµ1 ϕu(ξ j), · · ·, Iµn ϕu(ξ j))
=

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds.

Proof. We apply ϕ-Riemann-Liouville fractional integral Iα ϕ on both sides of (1.1), by Theorem 2.1,
we have

CDβ ϕu(t) −
∑m

i=1 Iωi ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t))
g(t, u(t), Iγ1 ϕu(t), · · ·, Iγp ϕu(t))

= Iα ϕh(t, u(t)) + c0,

then by u(0) = 0, CDβ ϕu(0) = 0, fi(0, 0, · · ·, 0︸  ︷︷  ︸
n+1

) = 0, we get c0 = 0. i.e,

CDβ ϕu(t) = g(t, u(t), Iγ1 ϕu(t), · · ·, Iγp ϕu(t))
∫ t

0
(ϕ(t)−ϕ(s))α−1

Γ(α) ϕ′(s)h(s, u(s))ds

+
m∑

i=1
Iωi ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t)).

(3.2)

Apply again fractional integral Iβ ϕ on both sides of (3.2) and by Theorem 2.1, we get

u(t) =
∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t)) + c1 + c2(ϕ(t) − ϕ(0)),

(3.3)

u(0) = 0, fi(0, 0, · · ·, 0︸  ︷︷  ︸
n+1

) = 0 yield c1 = 0, thus equation (3.3) is reduced to

u(t) =
∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(t, u(t), Iµ1 ϕu(t), · · ·, Iµn ϕu(t)) + c2(ϕ(t) − ϕ(0)),

(3.4)

specially.

u(1) =
∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(1, u(1), Iµ1 ϕu(1), · · ·, Iµn ϕu(1)) + c2(ϕ(1) − ϕ(0)),

u(ξ j) =
∫ ξ j

0
(ϕ(ξ j)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(ξ j, u(ξ j), Iµ1 ϕu(ξ j), · · ·, Iµn ϕu(ξ j)) + c2(ϕ(ξ j) − ϕ(0)),
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from u(1) =
k∑

j=1
δ ju(ξ j), we have

c2 =
1

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))[∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
m∑

i=1
Iωi+β ϕ fi(1, u(1), Iµ1 ϕu(1), · · ·, Iµn ϕu(1))

−
k∑

j=1
δ j

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

−
k∑

j=1
δ j

m∑
i=1

Iωi+β ϕ fi(ξ j, u(ξ j), Iµ1 ϕu(ξ j), · · ·, Iµn ϕu(ξ j))
]
.

Consequently, we can get the desired result. The proof is completed. �

Theorem 3.2 Suppose that functions g ∈ C(J×Rp+1,R\{0}), h ∈ C(J×R,R) and fi ∈ C(J×Rn+1,R)
with fi(0, 0, · · ·, 0︸  ︷︷  ︸

n+1

) = 0. Furthermore, assume that

(C1) there exist bounded mapping σ : [0, 1]→ R+, λ : [0, 1]→ R+ such that

|g(t, k1, k2, · · ·, kp+1) − g(t, k
′

1, k
′

2, · · ·, k
′

p+1)| ≤ σ(t)
p+1∑
i=1

|ki − k
′

i |

for t ∈ J and (k1, k2, · · ·, kp+1), (k
′

1, k
′

2, · · ·, k
′

p+1) ∈ Rp+1, and
|h(t, u) − h(t, v)| ≤ λ(t)|u − v| for t ∈ J and u, v ∈ R;
(C2) there exist φi,Ω, χ ∈ C(J,R+), i = 1, 2, · · ·,m such that

| fi(t, k1, k2, · · ·, kn+1)| ≤ φi(t), ∀ (t, k1, k2, · · ·, kn+1) ∈ J × Rn+1,

|h(t, u)| ≤ Ω(t), ∀ (t, u) ∈ J × R,

|g(t, k1, k2, · · ·, kp+1)| ≤ χ(t), ∀ (t, k1, k2, · · ·, kp+1) ∈ J × Rp+1;

(C3) there exists r > 0 such that

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
)

(
χ∗Ω∗

(ϕ(1) − ϕ(0))α

Γ(α + 1)
(ϕ(1) − ϕ(0))β

Γ(β + 1)
+

m∑
i=1

φ∗i
(ϕ(1) − ϕ(0))ωi+β

Γ(ωi + β + 1)

)
≤ r;

(3.5)
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χ∗λ∗ + Ω∗σ∗

p+1∑
i=1

(ϕ(1) − ϕ(0))γi

Γ(γi + 1)

) (ϕ(1) − ϕ(0))α

Γ(α + 1)

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
) (ϕ(1) − ϕ(0))β

Γ(β + 1)
< 1,

(3.6)

where Ω∗ = sup
0≤t≤1
|Ω(t)|, φ∗i = sup

0≤t≤1
|φi(t)|, i = 1, 2, · · ·, p, χ∗ = sup

0≤t≤1
|χ(t)|, λ∗ = sup

0≤t≤1
|λ(t)|, σ∗ =

sup
0≤t≤1
|σ(t)|.

Then the hybrid problem (1.1), (1.2) has at least one solution.

Proof. Define a subset S of E as
S = {u ∈ E : ‖u‖ ≤ r},

where r satisfies inequality (3.5). Clearly S is closed, convex and bounded subset of the Banach space
E. Define two operators A : E → E by

Au(t) =
∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))∫ ξ j

0
(ϕ(ξ j)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds,

(3.7)

Bu(t) =
m∑

i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds.

(3.8)

Then u(t) is a solution of problem (1.1), (1.2) if and only if u(t) = Au(t) + Bu(t). We shall show that
the operators A and B satisfy all the conditions of Lemma 2.2. We split the proof into several steps.

AIMS Mathematics Volume 5, Issue 6, 7175–7190.
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Step 1. We first show that A is a contraction mapping. Let u(t), v(t) ∈ S , we write

G(s) = g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτ

−g(s, v(s), Iγ1 ϕv(s), · · ·, Iγp ϕv(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, v(τ))dτ,

then by (C1) we have

|G(s)| =

∣∣∣∣∣g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτ

−g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, v(τ))dτ

+g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, v(τ))dτ

−g(s, v(s), Iγ1 ϕv(s), · · ·, Iγp ϕv(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, v(τ))dτ
∣∣∣∣∣

≤

∣∣∣∣∣g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∣∣∣∣∣ ∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)
∣∣∣h(τ, u(τ)) − h(τ, v(τ))

∣∣∣dτ
+

∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)|h(τ, v(τ))|dτ∣∣∣∣∣g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s)) − g(s, v(s), Iγ1 ϕv(s), · · ·, Iγp ϕv(s))
∣∣∣∣∣

≤ χ∗λ∗
∥∥∥u − v

∥∥∥ (ϕ(s)−ϕ(0))α

Γ(α+1) + Ω∗
(ϕ(s)−ϕ(0))α

Γ(α+1) σ∗
p+1∑
i=1

(ϕ(s)−ϕ(0))γi

Γ(γi+1) ‖u − v‖

≤

(
χ∗λ∗ + Ω∗σ∗

p+1∑
i=1

(ϕ(1)−ϕ(0))γi

Γ(γi+1)

)
(ϕ(1)−ϕ(0))α

Γ(α+1) ‖u − v‖,

thus we have

|Au(t) − Av(t)| ≤
∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)G(s)ds +
ϕ(t) − ϕ(0)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)G(s)ds

+
ϕ(t) − ϕ(0)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
k∑

j=1

δ j

∫ ξ j

0

(ϕ(ξ j) − ϕ(s))β−1

Γ(β)
ϕ′(s)G(s)ds

≤

(
χ∗λ∗ + Ω∗σ∗

p+1∑
i=1

(ϕ(1) − ϕ(0))γi

Γ(γi + 1)

) (ϕ(1) − ϕ(0))α

Γ(α + 1)

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
) (ϕ(1) − ϕ(0))β

Γ(β + 1)
‖u − v‖,

which implies

‖Au(t) − Av(t)‖ ≤
[(
χ∗λ∗ + Ω∗σ∗

p+1∑
i=1

(ϕ(1) − ϕ(0))γi

Γ(γi + 1)

) (ϕ(1) − ϕ(0))α

Γ(α + 1)

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
) (ϕ(1) − ϕ(0))β

Γ(β + 1)

]
‖u − v‖,
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in view of (3.6), this shows that A is a contraction mapping.
Step 2. The operator B is compact and continuous on S.
First, we show that B is continuous on S. Let {un} be a sequence of functions in S converging to a

function u ∈ S . Then by Lebesgue dominated convergence theorem,

lim
n→∞

Bun(t) = lim
n→∞

[ m∑
i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds
]
.

=
m∑

i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) lim
n→∞

fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) lim
n→∞

fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) lim
n→∞

fi(s, un(s), Iµ1 ϕun(s), · · ·, Iµn ϕun(s))ds

=
m∑

i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕ(s), · · ·, Iµn ϕu(s))ds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds = Bu(t).
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This shows that B is continuous on S . It is sufficient to show that B(S ) is a uniformly bounded and
equicontinuous set in E.

First, we note that

|Bu(t)| ≤
m∑

i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s)| fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))|ds

+
ϕ(t) − ϕ(0)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
m∑

i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s)| fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))|ds

+

(ϕ(t) − ϕ(0))
k∑

j=1
δ j∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
m∑

i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s)| fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))|ds

≤
m∑

i=1
φ∗i

(ϕ(1) − ϕ(0))ωi+β

Γ(ωi + β + 1)
+

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
m∑

i=1
φ∗i

(ϕ(1) − ϕ(0))ωi+β

Γ(ωi + β + 1)

=

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
) m∑

i=1

φ∗i
(ϕ(1) − ϕ(0))ωi+β

Γ(ωi + β + 1)
.

This shows that B is uniformly bounded on S .
Next, we show that B is an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2 and u ∈ S . Then

we have
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|Bu(t2) − Bu(t1)| =

∣∣∣∣∣ m∑
i=1

∫ t2
0

(ϕ(t2)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

−
m∑

i=1

∫ t1
0

(ϕ(t1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

+
ϕ(t2) − ϕ(t1)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds

−

(ϕ(t2) − ϕ(t1))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, u(s), Iµ1 ϕu(s), · · ·, Iµn ϕu(s))ds
∣∣∣∣∣

≤
m∑

i=1

φ∗i
Γ(ωi + β)

[∣∣∣∣∣∫ t1

0
[(ϕ(t2) − ϕ(s))ωi+β−1 − (ϕ(t1) − ϕ(s))ωi+β−1]ϕ′(s)ds

+
∫ t2

t1
[(ϕ(t2) − ϕ(s))ωi+β−1ϕ′(s)ds

∣∣∣∣∣
+

ϕ(t2) − ϕ(t1)∣∣∣∣∣ k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
∫ 1

0
(ϕ(1) − ϕ(s))ωi+β−1ϕ′(s)ds

+

(ϕ(t2) − ϕ(t1))
k∑

j=1
δ j∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
∫ ξ j

0
(ϕ(ξ j) − ϕ(s))ωi+β−1ϕ′(s)ds

]

≤
m∑

i=1

φ∗i
Γ(ωi + β + 1)

[∣∣∣∣∣(ϕ(t2) − ϕ(0))ωi+β − (ϕ(t1) − ϕ(0))ωi+β

∣∣∣∣∣
+

ϕ(t2) − ϕ(t1)∣∣∣∣∣ k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣ (ϕ(1) − ϕ(0))ωi+β

+

(ϕ(t2) − ϕ(t1))
k∑

j=1
δ j∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣ (ϕ(ξ j) − ϕ(0))ωi+β
]
.

Let h(t) = (ϕ(t) − ϕ(0))ωi+β. Then h is continuously differentiable function. Consequently, for all
t1, t2 ∈ [0, 1], without loss of generality, let t1 < t2, then there exist positive constants M such that

|h(t2) − h(t1)| = |h′(ξ)||t2 − t1| ≤ M|t2 − t1|, ξ ∈ (t1, t2).

On the other hand, for ϕ ∈ C
′

[0, 1], thus there exist positive constants N such that |ϕ(t2) − ϕ(t1)| =
|ϕ′(ξ)||t2 − t1| ≤ N|t2 − t1|, ξ ∈ (t1, t2), from which we deduce

|Bu(t2) − Bu(t1)| → 0 as t2 − t1 → 0.

AIMS Mathematics Volume 5, Issue 6, 7175–7190.



7186

Therefore, it follows from the Arzela-Ascoli theorem that B is a compact operator on S .
Step 3. Next we show that hypothesis (H3) of Lemma 2.2 is satisfied. Let v ∈ S , then we have

|u(t)| = |Au(t) + Bv(t)| ≤ |Au(t)| + |Bv(t)|

≤

∣∣∣∣∣∫ t

0
(ϕ(t)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))∫ 1

0
(ϕ(1)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))∫ ξ j

0
(ϕ(ξ j)−ϕ(s))β−1

Γ(β) ϕ′(s)g(s, u(s), Iγ1 ϕu(s), · · ·, Iγp ϕu(s))
∫ s

0
(ϕ(s)−ϕ(τ))α−1

Γ(α) ϕ′(τ)h(τ, u(τ))dτds
∣∣∣∣∣

+

∣∣∣∣∣ m∑
i=1

∫ t

0
(ϕ(t)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, v(s), Iµ1 ϕv(s), · · ·, Iµn ϕv(s))ds

+
ϕ(t) − ϕ(0)

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ 1

0
(ϕ(1)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, v(s), Iµ1 ϕv(s), · · ·, Iµn ϕv(s))ds

−

(ϕ(t) − ϕ(0))
k∑

j=1
δ j

k∑
j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

m∑
i=1

∫ ξ j

0
(ϕ(ξ j)−ϕ(s))ωi+β−1

Γ(ωi+β) ϕ′(s) fi(s, v(s), Iµ1 ϕv(s), · · ·, Iµn ϕv(s))ds
∣∣∣∣∣

≤

(
1 +

(ϕ(1) − ϕ(0))(1 +
k∑

j=1
δ j)∣∣∣∣∣ k∑

j=1
δ j(ϕ(ξ j) − ϕ(0)) − (ϕ(1) − ϕ(0))

∣∣∣∣∣
)

(
χ∗Ω∗

(ϕ(1) − ϕ(0))α

Γ(α + 1)
(ϕ(1) − ϕ(0))β

Γ(β + 1)
+

m∑
i=1

φ∗i
(ϕ(1) − ϕ(0))ωi+β

Γ(ωi + β + 1)

)
≤ r,

which implies ‖u‖ ≤ r and so u ∈ S .
Thus all the conditions of Lemma 2.2 are satisfied and hence the operator equation u = Au + Bu

has a solution in S . In consequence, the problem (1.1), (1.2) has a solution on J. This completes
the proof. �

AIMS Mathematics Volume 5, Issue 6, 7175–7190.



7187

4. Example

In this section, we provide an example to illustrate our main result.
Example 4.1 Consider the following hybrid ϕ-Caputo fractional integro-differential equations

CD
1
2

t
4

(CD
3
2

t
4 u(t) −

2∑
i=1

Iωi
t
4 fi(t, u(t), I

1
3

t
4 u(t), I

4
3

t
4 u(t))

1
4 t2

(
|u(t)|

1 + |u(t)|
+
|I

1
4

t
4 u(t)|

1 + |I
1
4

t
4 u(t)|

+ sin I
1
2

t
4 u(t)

) )
=

2
5

cos(
t
4

)
(
|u(t)|
|u(t)| + 1

)
, t ∈ J = [0, 1], (4.1)

u(0) = 0, CD
3
2

t
4 u(0) = 0, u(1) =

1
3

u(
1
3

), (4.2)

where

2∑
i=1

Iωi
t
4 fi(t, u(t), I

1
3

t
4 u(t), I

4
3

t
4 u(t)) = I

1
3

t
4

(
t
[
|u(t)|

1 + |u(t)|
+ sin(I

1
3

t
4 u(t)) + cos(I

4
3

t
4 u(t))

])
+I

2
3

t
4

(
t

10

[
|u(t)|

1 + |u(t)|
+ arctan(I

1
3

t
4 u(t)) + sin(I

4
3

t
4 u(t))

])
.

(4.3)

We note that α = 1
2 , β = 3

2 ,m = 2, n = 2, p = 2, k = 1, δ = 1
3 , ξ = 1

3 , ω1 = 1
3 , ω2 = 2

3 , µ1 = 1
3 , µ2 =

4
3 , γ1 = 1

4 , γ2 = 1
2 , ϕ(t) = t

4 ,

f1(t, u(t), I
1
3

t
4 u(t), I

4
3

t
4 u(t)) = t

[
|u(t)|

1 + |u(t)|
+ sin(I

1
3

t
4 u(t)) + cos(I

4
3

t
4 u(t))

]
,

f2(t, u(t), I
1
3

t
4 u(t), I

4
3

t
4 u(t)) =

t
10

[
|u(t)|

1 + |u(t)|
+ arctan(I

1
3

t
4 u(t)) + sin(I

4
3

t
4 u(t))

]
,

g(t, u(t), I
1
4

t
4 u(t), I

1
2

t
4 u(t)) =

1
4

t2
(
|u(t)|

1 + |u(t)|
+
|I

1
4

t
4 u(t)|

1 + |I
1
4

t
4 u(t)|

+ sin I
1
2

t
4 u(t)

)
,

h(t, u(t)) =
2
5

cos(
t
4

)
(
|u(t)|
|u(t)| + 1

)
.

Thus we have

|g(t, u(t), I
1
4

t
4 u(t), I

1
2

t
4 u(t)) − g(t, v(t), I

1
4

t
4 v(t), I

1
2

t
4 v(t))| ≤ σ(t)

[
1 + t

1
4

Γ( 5
4 )

+ t
1
2

Γ( 3
2 )

]
|u(t) − v(t)|

= t2
4

[
1 + t

1
4

Γ( 5
4 )

+ t
1
2

Γ( 3
2 )

]
|u(t) − v(t)|,

|h(t, u(t)) − h(t, v(t))| =
2
5

cos(
t
4

)|u(t) − v(t)|.
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Therefore,

σ∗ = sup
0≤t≤1
|σ(t)| = sup

0≤t≤1

t2

4

[
1+

t
1
4

Γ( 5
4 )

+
t

1
2

Γ(3
2 )

]
=

1
4

(
1+

1
Γ(5

4 )
+

1
Γ( 3

2 )

)
=

1
4

(
1+

1
0.9064

+
1

0.8862

)
= 0.8079;

λ∗ = sup
0≤t≤1
|λ(t)| = sup

0≤t≤1

2
5

cos(
t
4

) = 0.4;

φ∗1 = sup
0≤t≤1
|φ1(t)| = sup

0≤t≤1
t(1 + 1 + 1) = 3;

φ∗2 = sup
0≤t≤1
|φ2(t)| = sup

0≤t≤1

t
10

(1 +
π

2
+ 1) =

1
10
× 3.57 = 0.357;

Ω∗ = sup
0≤t≤1
|Ω(t)| = sup

0≤t≤1

2
5

cos(
t
4

) = 0.4;

χ∗ = sup
0≤t≤1
|χ(t)| = sup

0≤t≤1

t2

4
(1 + 1 + 1) =

3
4

= 0.75.

Choose r > 0.5, then we have

(
1 +

1
4 ×

4
3

2
9

)[
0.75 × 0.4 ×

( 1
4 )

1
2

Γ(3
2 )
×

( 1
4 )

3
2

Γ(5
2 )

+ 3 ×
(1

4 )
11
6

Γ( 17
6 )

+ 0.357 ×
( 1

4 )
13
6

Γ( 19
6 )

]
= 0.4016 ≤ r.

Moreover,

(
0.75 × 0.4 + 0.4 × 0.8079 ×

( ( 1
4 )

1
4

Γ( 5
4 )

+
( 1

4 )
1
2

Γ(3
2 )

)) ( 1
4 )

1
2

Γ(3
2 )

(
1 +

1
4 ×

4
3

2
9

) ( 1
4 )

3
2

Γ( 5
2 )

= 0.097 < 1.

Now, by using Theorem 3.2, it is deduced that the fractional hybrid integro-differential problem
(4.1), (4.2) has a solution.

5. Conclusions

Hybrid fractional integro-differential equations have been considered more important and served as
special cases of dynamical systems. In this paper, we introduced a new class of the hybrid ϕ-Caputo
fractional integro-differential equations. By using famous hybrid fixed point theorem due to Dhage,
we have developed adequate conditions for the existence of at least one solution to the hybrid problem
(1.1), (1.2). The respective results have been verified by providing a suitable example.
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