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1. Introduction

Hybrid differential equations have been considered more important and served as special cases of
dynamical systems. Dhage and Lakshmikantham [1] were the first to study ordinary hybrid differential
equation and studied the existence of solutions for this boundary value problem. In recent years, with
the wide study of fractional differential equations, the theory of hybrid fractional differential equations
were also studied by several researchers, see [2—10] and the references therein.

Zhao et al. [2] studied existence and uniqueness results for the following hybrid differential
equations involving Riemann-Liouville fractional derivative

q x(1) 3 B
DO+(—f(t, x(t))) = o(t,x(1)), aete]=1[0,T]
x(0) =0,

where 0 < g < 1,f € C(JXR — R\{0}) and g € C(J X R, R).
Zidane Baitiche et al. [11] considered the following boundary value problem of nonlinear fractional
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hybrid differential equations involving Caputo’s derivative

C e x(1) ~ i
DO+(f(t,x—(u(t)))) = g(t, x(u(®))), tel=10,1]
x(t) X(0)
Xy o
“[fu, x(#(t)))] o [f(t, X(,U(t)))]

where 0 < @ < 1.€ Dy. is the Caputo fractional derivative. f € C(I X R — R\{0}),g € C(I X R, R).

As we all known, the hadamard fractional differential equations are also popular in the literature,
see [12-16], so some authors began to study the theory of fractional hybrid differential equation of
hadamard type.

Zidane Baitiche et al. [17] studied the existence of solutions for fractional hybrid differential
equation of hadamard type with dirichlet boundary conditions

- Lo

=1

(20

f( x(t))) =gt x(®), 1<t<e, 1<a<?2,

x(1)=0, x(e)=0,

where 1 < a@ < 2, gD is the Hadamard fractional derivative, f € C([1,e] Xx R — R\{0}) and g €
C([1,e] XR,R).

In [18], M. Jamil et al. discussed the existence result for the boundary value problem of hybrid
fractional integro-differential equations involving Caputo’s derivative given by

CDQ(CDwu(t) — > PPifit, u(D))
g(t, u(?))

u(0) =0, D“u(0) =0, u(l) =du(n), 0<o<1, 0<np<l,

) — h(t, u(t), Pu(®), 1€ J=[0,1],

where €D is the Caputo fractional derivative of order a, “D“ is the Caputo fractional derivative of
orderw, 0<a<l, 1 <w<?2.

In order to analyze fractional differential equations in a generic way, a fractional derivative with
respect to another function called ¢-Caputo derivative was proposed [19].

By mixing idea of the above works, we derived an existence result for the nonlocal boundary value
problems of hybrid ¢-Caputo fractional integro-differential equations

CDB ety — S I ¢ fi(t, u(e), I “ut), - - -, I “u(?))
C na i=1 _ _
D 90( T e T ) — @), e =011, (1)
k
u(0) = 0, “DFu(0) = 0, u(l) = > Su(&)), (1.2)
j=1

where 0 < @ < 1, 1 < B < 2, CD*¢ is the ¢-Caputo fractional derivative of order «, CDP¥ is
the ¢-Caputo fractional derivative of order S, the function ¢ : [0,1] — R is a strictly increasing
function such that ¢ € C?[0, 1] with ¢’(x) > 0 for all x € [0, 1], I* ¥ denote the ¢-Riemann-Liouville
fractional integral of order p, g € C(J X RP*!,R\{0}), h € C(J X R,R) and f; € C(J x R**!,R) with
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£i(0,0,--,0) =0, w; >0,7=1,2,---,m, 1, ;4 > 0and y;,-- 1,7, >0,0<96; <1, j=

n+l

1,2,- -k, 0<é << <& < 1

It is notable that the fractional hybrid integro-differential equation presented in this paper is the
novel in the sense that the fractional derivative with respect to another function called ¢-Caputo
fractional derivative. Note that the hybrid fractional integro-differential equations involving Caputo’s
derivative in [18] is a special case of our hybrid ¢-Caputo fractional integro-differential equations
with ¢(f) = t. Moreover, all dependent functions f; and g in our paper are in the form of multi-term.
Furthermore, our problem is more general than the work in [8], as we consider the problem with
multi-point boundary conditions, while the authors in [8] only investigated two-point boundary
condition.

The organization of this work is as follows. Section 2 contains some preliminary facts that we
need in the sequel. In section 3, we present the solution for the hybrid fractional integro-differential
equation (1.1), (1.2) and then prove our main existence results. Finally, we illustrate the obtained
results by an example.

2. The preliminary lemmas
In the following and throughtout the text, a > 0 is areal, x : [a,b] — R an integrable function and

¢ € C?[a, b] an increasing function such that with ¢’(¢) # 0 for all ¢ € [a, b].
Definition 2.1 The ¢-Riemann-Liouville fractional integral of x of order « is defined as follows

1 t
1.7 x(1) = T f ' (5)(@(1) = ()™ x(s)ds.

Definition 2.2 The p-Riemann-Liouville fractional derivative of x of order « is defined as follows

dy ..
17 %x(r) =

a ¢ . “ 1 1 i nf[ ’ _ n—a—1
Do) = (e ) ol ma) | e o eyt

here n = [a] + 1.
Remark 2.1 Let a, 8 > 0, then the relation holds

P2 2x(0) = 1577 “x(0).

Definition 2.3 Let @ > 0 and x € C"![a, b], the p-Caputo fractional derivative of x of order « is
defined as follows

n—-1 _[k]
D Ex(r) = Djf’[x(t) -3 kfa) (00— (@) |, n=[a]+ 1 fora g N, n=aforaeN,
k=0 '
[k d\f
where x() = (W n =) o).

Theorem 2.1 [20] Let x : [a, b] — R. The following results hold:
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1. If x € C[a, b], then D *I7.%x(t) = x();
2. If x € C"'[a, b], then

1.5 Dy x(0) = x(1) - }S - g(@)".

Lemma 2.2 [18] Let S be a nonempty, convex, closed, and bounded set such that § C E, and let
A:E — Eand B: S — E be two operators which satisfy the following :
(H,) A is contraction;
(H,) B is compact and continuous, and
(H3)u=Au+Bv, YveS = ues.
Then there exists a solution of the operator equation u = Au + Bu.
Let E = C(J, R) be a Banach space equipped with the norm

llull = sup u(f)] and (uv)(?) = u(t)v(t), VteJ

teJ

Then E is a Banach algebra with the above norm and multiplication.
3. Main results

Lemma 3.1 Suppose that o, 8, w;,i = 1,2, - - sm,y;,i = 1,2, -, p,p,i = 1,2,---,n,6,,&,j =
1,2,---,k and functions g, h, f;,i = 1,2, - - -, m satisfy problem (1.1), (1.2). Then the unique solution of
(1.1), (1.2) is given by

(o) fo (t,a(t)rt(/jé;))ﬁ @' (8)g(s, u(s), I “u(s), - - -, I “u(s)) fos %g@l(‘r)h(T, u(r))drds
3B L (), 1 u(t), - - 1P u()
i=1

@) — ¢(0)
Zk: 6(p(&) — ¢(0)) = (¢(1) = ¢(0))
[ fol <¢<1>r$»ﬁ (5)g(s, u(s), I #u(s), - -, I #u(s)) [ O o (ayn(r, u(r))drds
+ El 19789 f(1, u(1), I “u(l), - - -, I* “u(1))

+

(3.1

k e

= 2 6 [} g (5)gCs. (). 17 (o)., 1 )
j:

f ¢ (@W-p@) ¢ (Dh(t, u(t))drds

0 )

k m
— Zl 6] Zl Iwi+,3 sofi(fj’ u(é‘-‘j)’ JH ‘Pu(é‘-‘j)’ S IHn Q"M(é-‘])) R
=i
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where
1979 ¢ fit, u(@), I Cult), - - -, I “ut))

_ w;+p-1
= 0’ %‘P'(@fi(& u(s), I Cu(s), - - -, I" u(s))ds:

JoitB ¢4, u(), I fu(l), - - -, I 2u(1))
= fOl (w(l)r(saw(% o 190 () fi(s, u(s), I" 2u(s), - - -, I" “u(s))ds;
1977 2 1 u&p). P u(gy), o I Pul)
i @E)-g et !
= [ ) s, u(s), B Fu(s), < P Pu(s))d,

Proof. We apply ¢-Riemann-Liouville fractional integral /* ¥ on both sides of (1.1), by Theorem 2.1,
we have
Cps “u(t) — Z;’il 190 ¢ fi(t, u(t), I u(t), - - -, I “u(t))
g(t, u®), I eu(t), - - -, I 2u(t))

=I1Y?h(t, u(t)) + co,

then by u(0) = 0, *D? “u(0) = 0, £,(0,0,---,0) = 0, we get ¢y = 0. i.e,
———

n+1

DUty = gt u(®). 1" fu(r),- -, I fu(n)) [y LU o (5)h(s, u(s))ds

m 3.2
+ 21 filt, u(@), I Pu(), - - -, I ). G2
i=1
Apply again fractional integral I? ¢ on both sides of (3.2) and by Theorem 2.1, we get
u(t) fo (OO 1 (5)g (s, u(s), ' “us), - P “u(s)) [ EEED o ()(r, u(r))drds .
+ Z 19 fit, u(t), I “u(t), - - -, I Cu(0)) + ¢1 + ca(p(t) — p(0)), '
i=1
u(0) =0, £(0,0,---,0) =0yield ¢; = 0, thus equation (3.3) is reduced to
——
n+l
K S -,
u = [ DV 7 (5)g(s, u(s), 17 “u(s), - -+, I #u(s)) [} COE o (r)h(z, u(r))drds G

+ 3 o ? Lt u@), I 2u(?), - - -, I Fu() + c2(p(t) — ¢(0)),
i=1
specially.

1 s S —o(T a—1 ,
u) = (g 1 (5)g(s, u(s), 1" “u(s), - -, 17 u(s)) [ EOEN ! (r)h(r, u(r))drds

+ 3 1o (L u(D), I Fu(l), - - -, I 2 u(l)) + ex(e(1) = ¢(0)),
i=1

f;’ j—sfl , S S_Ta—l ,
u) = [ N (g5 us), I Fuls), - I fus) [ EOE L (e, u())drdss

+ i[wﬁﬁ “”fi(fj, u(fj), JH Spu(fj), ce [P ¢u(§j)) + Cz(ﬁp(fj) — ¢(0)),
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k
from u(1) = > 6;u(¢;), we have
j=1

1
Cr =
Z 0(p(&)) — ¢(0)) = (¢(1) — ¢(0))
1 s S $)—o(T a—1 ,
[ fo (¢(1)F9(2() Y o (5)g(s, uls), I “u(s), - - - I “u(s)) fo %90 (D)h(t, u(t))dtds
+ Z JoitB “’fi(l, u(1), I ¢u(1), - - -, I* “u(1))
fj j S 1
_ Z 5; @E) eV )r(fa() P 5 (5)g(s u(s), 7 “u(s), - - -, I “u(s))
S s !,
fo —(“’( )r‘(”é))) ¢’ (Dh(t, u(t))drds
k m
= 31.0) 11O i@, I Fu(E), - 1w |
=1 =
Consequently, we can get the desired result. The proof is completed. m|

Theorem 3.2 Suppose that functions g € C(J x RP*!,R\{0}), h € C(JXR,R) and f; € C(JXR"*',R)
with £(0,0, - - -,0) = 0. Furthermore, assume that
— —

n+1

(C) there exist bounded mapping o : [0, 1] = R*, A4: [0, 1] — R* such that
p+1
9t K1, e, <, Kepet) = 8Ky Ky e )] < (1) ) Tk = K

i=1

for ¢ € J and (ky, ko, - - - kpi1), (Ko Ky, - - ~,k;+1) € RP*' and
|h(t, u) — h(t,v)| < A(t)|lu — v|fort € J and u,v € R;
(C,) there exist ¢;, Q, y € C(J,R"),i = 1,2, - -,m such that

|fit, ki ko, - o k)l < @i0), Y (8 k1, ko - k1) € J X R,
|h(t,u)| < Q@), Y (t,u) € J X R,

|g(t7 kl’k29 Y kp+l)| SX(I)’ V (t’ kl’ k27 Y kp+1) € J X RP+1;

(C5) there exists r > 0 such that

k
(p(1) = (O + _Zl 95)
=

1+

) = ¢(0) = (e(1) - 90(0))‘ (3.5

. *‘ (@(1) = e(0)* (p(1) — ¢(0))? (@(1) — @(0))*h )
(XQ Ta+1) T@+1) Z¢ T(w; + B+ 1) )Sr’
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- . P (1) = @(0)7 (o(1) — ¢(0))®
(X/l R Y o ) T(a+1)
k

(p(1) —p(O)( + X 6)) (3.6)
- = )(90(1) - (0)y° <1

1
) = 9(0)) - ((1) - ¢(0)>‘ G+D

where Q* = sup [Q(1)], ¢; = sup gD, i = 1,2,---,p, x* = sup [x(®)|, ¥ = sup [A()], o
0<t<1 0<t<1 0<r<1 0<t<1
sup |o(?)|.

0<t<1

Then the hybrid problem (1.1), (1.2) has at least one solution.

Proof. Define a subset S of E as
S={ueck: |ul<r}

where r satisfies inequality (3.5). Clearly S 1is closed, convex and bounded subset of the Banach space
E. Define two operators A : E — E by

Aut) = [} SO g (5)g(s, u(s), I Su(s), -, I “u(s)) J COEO g (ryi(r, u(r))dds
(1) = 9(0)

k
'21 0i(p(&)) — ¢(0)) — (p(1) — ¢(0))
j:
fol (elyopP @' (5)g(s, u(s), " “u(s),- - -, I “u(s)) fos GO ¢ (T)h(t, u(t))drds

I'®) y @) (3.7)
(60 = ¢(0) 2 5
j=

—+

k
3 6((&) = 9(0) = (e(1) = ¢(0)
[ B ot (g, u(s). I #us). - I #u(s)) [} EOED (), u(r))d s,

0 r'e) (@)
Bu) =3 [ OOV 0 (5) fis, u(s), 1 Fu(s), -+, I “u(s))ds
] (1) — ¢(0)

+

Z 0;(¢(&)) = ¢(0) = (e(1) = ¢(0))

1 s w;+p—1
Z fo s () fi(s, u(9), I “u(s), - - -, P “u(s))ds (3.8)

k
(p(1) = ¢(0)) ; 0;

Z 0;(¢(&)) = ¢(0) = (¢(1) = ¢(0))

Z L J %w (S)ﬁ(s’ u(s)’ [“1 ‘pu(s)’ <o I/Jn ‘pu(s))ds’

Then u(t) is a solution of problem (1.1), (1.2) if and only if u(t) = Au(t) + Bu(t). We shall show that
the operators A and B satisfy all the conditions of Lemma 2.2. We split the proof into several steps.

AIMS Mathematics Volume 5, Issue 6, 7175-7190.
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Step 1. We first show that A is a contraction mapping. Let u(t), v(r) € S, we write

G(s) = g(s,u(s), I “u(s), - -, " u(s)) [ “"(”rf(g” @' (Dh(t, u(t))dr

—g(5,v(8), I #¥(s), -, I #3(s)) [ COED 1 (ryn(r, v(r))dr,

then by (C;) we have

GG = [g(s,u(s), I “u(s), -, P #u(s)) [ EOEO o (), u(r))dr
—g(s.u(s), I #u(s), - I “u(s)) f;" 2L ot (2y(r, v(r)d
+8(s, u(s), I “u(s), - - -, I'? “u(s)) fos %gp’(‘r)h(n v(1))dt
—g(5, v(s), I #9(s), - -, I #1(s)) [ EED o (2)(r, w(1))de

O (), u(r)) ~ e, ()| de

< ‘g(s u(s), I’ ?u(s),- - -, I'"" “u(s)) @

+ [ EE o (2)li(r, v(D))ld

' (s, u(s), I Pu(s), - - -, I'" Pu(s)) — g(s,v(s), I" #v(s), - - -, I"? ?v(s))

<Y A||u

- v| @O | oy &)~ w(O))” Z (@(s)—p(0)

T(a+D) T(at1) TGt 1) [l = |

p+
= (X A+ Qo 21 (w(rgyi(l))) )@(rzaf(l)» llue = vll,
=

thus we have
@(1) — ¢(0)

) = ¢(0) = (¢(1) = ¢(0))

Au(t) - Av(n)| < [ EOEY ()G s)ds + —

Jy ERE g ()G (5)d s
#(0) = 4(0) f’ (6(&) — ()"

I
) = 0(0)) - (p(1) - p(0) ®)

- . L P (e(1) = ¢(0)7\ (1) = ¢(0))*
S(Xﬂ YL TR ) T+ 1)
k

(p(1) = (0 + Zl )
=

¢ (5)G(8)ds

j= 1

1+

(o) — ¢y
) = vl

I 1
)~ (0)) = (1) — <p<0>>‘ G+D

which implies

e 1 e R ((1) = 9(0))7\ (p(1) = ¢(0))”
lAu(t) — Av(D)|| < [(Xﬂ + Qo 1:21 To+ D ) fa+ D
k

(1) —0))(1 + > 6;
R A - )(«p(l)—som»ﬁ

T 1
)= 0(0)) - (p(1) - 90(0))‘ G+D

llu =il

AIMS Mathematics Volume 5, Issue 6, 7175-7190.
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in view of (3.6), this shows that A is a contraction mapping.

Step 2. The operator B is compact and continuous on S.

First, we show that B is continuous on S. Let {u,} be a sequence of functions in S converging to a
function u € S. Then by Lebesgue dominated convergence theorem,

lim Bu,(1) = hm[z i COE DT () (s, ta(8) I “utn(5), - -, I 9, (5))d s

f—00 N(wi+B)

o(t) = p(0)
z 5,(p(&)) — 9(0)) — (p(1) — p(0)
z fol GO 1 (5) (5. (), I €tn(5), - - I 1, (5))d s

k
(p(1) — ¢(0)) Z] 0j
e

+

k
Z 0;(¢(&)) = ¢(0) = (¢(1) = ¢(0))

s w;j+p-1
Z EJ (¢(§ji"(i(,_,_)’[)g) ¥ (S)ﬁ(s’ l/tn(S), " 9"u,,(s), ) I S"un(s))ds .

- z Jo VLT (5) Tim (s, 1 (5), 1 €t (5), -+, P 1, (5)dls
¢(1) = ¢(0)

k
Z 0;(¢(&)) = ¢(0) = (¢(1) = ¢(0))

z fol (el 41 (5) i fi(s, 1 (5), 140 €1 (5), -, I 10, (s))dls

+

k
(¢(1) = ¢(0)) Zl 0;
J:

=~

Z H(@(&5) = ¢(0)) = (p(1) = ¢(0))

m §))@it 1
3, [ G () Tim fi(s, (), 1 14y (s), - - - " Cun(5))ds

P T(wi+h)
m- —p(s)@itBl
= 3 ) SR (s (), 11 4(5), - I Fu(s))ds
¢(1) = ¢(0)

Z 0;(¢(&)) = ¢(0) = (¢(1) = ¢(0))

m 1 s w;+p—1
Z‘ fo (w(l)r(szf 2}) " (s)f,-(s, u(s), I ¢u(s), - - -, I ¢u(s))ds

k
(@(1) — ¢(0)) Z] 0;
f=

k
Z 0;(¢(&)) = ¢(0) = (¢(1) = ¢(0))

z g W eI 1 (5) (s, u(s), I #us), - - I Su(s))ds = Bu(r).

AIMS Mathematics Volume 5, Issue 6, 7175-7190.
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This shows that B is continuous on S. It is sufficient to show that B(S) is a uniformly bounded and
equicontinuous set in E.
First, we note that

Hwi+B)

¢(1) — ¢(0)
) = (0) = (¢(1) = ¢(0))
zﬂwﬂﬁ$*¢wmmMﬂwﬁm»wwwwmm

k
(1) — ¢(0)) 21 oy
fa

ww»sﬁﬂwﬂ@ﬁ%mmmm&wwwfwwwmws

+
)= #(0) - (1) - 9(0)
by &%%%%ﬁ—(Wﬂ&MﬂVWMﬂ“BVNMWWS
k
1) — O+ > 6;
< g B = pl0) ()= pONL+ 2,09

k

A7 T +B+1
i Twi++1) 2 6,(¢(€) = ¢(0) = (e(1) = ¢(0))
=

(1) = p(0)
2O B+ )

k
(p(1) = (ON( + Zl 9;)
=

S 1) - (0)“*
Z‘b () = p(O)™

()0 ] — “ i= i ﬁ 1

This shows that B is uniformly bounded on S.
Next, we show that B is an equicontinuous set in E. Let 1,1, € J with t;{ < t, and u € S. Then
we have

AIMS Mathematics Volume 5, Issue 6, 7175-7190.
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|Bu(t,) — Bu(t))| = ’Z . (‘”(’2}&(?}; S ($)F(s, uls), I Cu(s), - - -, I fu(s))ds

Z f“ «a(mr (f,(?}; N &' (9) fi(s, u(s), I “u(s), - - -, I" “u(s))ds
@(tr) — o(t1)

Z 0i(p(€)) — ¢(0)) = (¢(1) — (0))

1 s w;+p—1
Z fo (*"(1)1_(‘5 l}s) @' () fi(s, u(s), " Pu(s), - - -, I"" Pu(s))ds

+

k
(p(12) — (1)) 21 0;
=

k
Z 01(¢(&)) = ¢(0) = ((1) = ¢(0))

f g % (5)fi(s, u(s), I €u(s), - - -, I #u(s))ds

<§F @B (o(ty) — ()P (5)dls
i=1 (wl

+ [Pt - ﬂﬂww1¢0w4

+ plt2) — ¢(t) f\wn G(5)* 51! (5)d s

) — (0) — ((1) —

(am—wm»z6j

) - ﬂ@le’®M4

) = ¢(0)) = ((1) = ¢(0))

<z——iL——kwm 2(0) — (g(t1) — @(0))“*8

i-1 Nw; + B+ 1)
(1) — @(0))**?

(1) — (1)
)—wm»wan—¢mﬂ

k
(p(12) — (1)) ;1 0
- = (&) = 90|,
)—wmrwan—¢mw

Let h(t) = (¢(t) — ¢(0))“*. Then h is continuously differentiable function. Consequently, for all
1, € [0, 1], without loss of generality, let #; < t,, then there exist positive constants M such that

|h(t2) — h(t)] = [ Ol — 11l < Mty — 1], & € (11, ).

On the other hand, for ¢ € C'[0, 1], thus there exist positive constants N such that |¢(5;) — ¢(t;)| =
" (E)t; — 11| < Nlt, — t1], €& € (11, 1), from which we deduce

|Bu(t,) — Bu(t))| > 0 as t,b—1, — 0.
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Therefore, it follows from the Arzela-Ascoli theorem that B is a compact operator on S.
Step 3. Next we show that hypothesis (H3) of Lemma 2.2 is satisfied. Let v € S, then we have
()] = |Au(®) + Bv(n)| < |Au(?)| + |Bv(1)]
N Xy —o(T a—1 ,
‘ Jo O ot (5)g (s, u(s)., I Cu(s), -+, 17 fu(s)) [ EED g (ryh(r, u(r))drds
@(1) — ¢(0)

k

Zl 6;(p(€)) — ¢(0)) = (¢(1) — ¢(0))

]:

fol @(1);%@)6—' & ()g(s,u(5), I €u(s), - - -, " #u(s)) [ %gp’(r)h(ﬁ u(t))dtds

k
(p(1) — ¢(0)) Zl 0,
f=

—+

k
-21 0;(¢(&)) = ¢(0)) = (¢(1) = ¢(0))
]:

i I (g, u(s), I #u(s), o, P uls)) [ R g (@, u(r))d s

S 7?) H
Z ff (so(ﬁ&iﬂ?)’w &' (8) fi(s, v(s), I" #v(s), - - -, IM #v(s))ds
N @(t) — ¢(0)

25(90(§J) ¢(0)) — (¢(1) — ¢(0))
b fo1 DD 1 (5) £i(5. v(5). T V(s), - - -, I #v(s))ds

k
(¢(0) = 6(0) 3. 5,
J:

k
Z 0(¢(&)) = ¢(0) = (¢(1) = ¢(0))

Z ¢ %(p ($)f(s, v(5), I #v(s), - - -, I #v(s))d's

k
(p(1) = (0N + Zl P
=

<(l+

)~ 0(0)) - (p(1) - 90(0))‘

vy (0(1) = 0(0))* (@(1) — (0)° L (p(1) = @(0))*F
(XQ Ta+1) L@+ Z¢ T(w; + B+ 1) )Sr’

which implies ||u|| < randsou € S.

Thus all the conditions of Lemma 2.2 are satisfied and hence the operator equation u = Au + Bu
has a solution in S. In consequence, the problem (1.1), (1.2) has a solution on J. This completes
the proof. O
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4. Example

In this section, we provide an example to illustrate our main result.
Example 4.1 Consider the following hybrid ¢-Caputo fractional integro-differential equations

DY fu(e) = 3 19 £t u(, I u(e), I )

i = 2t |u(@)
‘D 4( ! ): —cos(—)( ) teJ=10,1] 4.1
%i 1z 5 4 1 ’ ’ ’
}‘tz( |u(?)| N I3 5u(r)| T sin Iﬂu(t)) lu()| +

L+u® 1+ [I3u@)

D=

u(0) =0, °p? u(0) =0, u(l) = %u(%), 4.2)

where

-b\

z 195 (2, u(e), I3 u(t), IS u() = I ( [1 lf(|; )(lt)l + sin(I¥ 5 u(e) + cos(l‘s‘iu(t))])

| @)l 4
(ﬁ[l )] + Ell'Ctal’l(I3 4u(t)) + 51n(]34u(t))])'

4.3)

2
3

EE

1

+

Wenotethata/ = 2,ﬂ =3m=2n= 2,p=2k=1,0 =
5’71 - 2972 - E’ (t) = 4’

Fit, u®), I35u(d), I iu(t) = r[ - lf(|;)(|z)| + sin(I35u(r)) + cos(lé‘iu(z))],
Bt ut), I uo), I u() = — [1|:‘(| )(l 5 +arctan(1%iu(t))+sin(13‘iu(t))],

(oL, 145 u(o)

11t 11t 1t
a(t, ut), IV u(e), I u() = ~ O 4 sin mu(z)),
4 \L+u®dl 1+ |155u@)

ht, u(t)) = —c s(- )(WZ‘)(ltﬂ 1)

Thus we have

80, o), 14 5u(0), T 4u(e) = g0, v(0), T¥50(0), T v(o)] < o)1+ 5 + 55 ) = v(o)

3
)
2

_ z[l N Tlu —]lu(t) — (@),

I\)\'—‘

N\u

|h(z, u(®)) = h(t, v())| = —COS( Olute) = v(o).
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Therefore,

lo(0)| = a 1+ f + & ] 1(1 1 + 1 ) 1(1+ ! + ! ) 0.8079
o = sup |o(7)] = su =— — == = 0. :
0<£1 0<£1 4 re) rel 4 r(g) I3y, 4\ 09064 0.8862

2
A" = sup |A(t)| = sup gcos( ) =04,

0<t<1 0<t<1

¢y = sup |¢1 (D] = sup t(1+1+1) =3;

0<r<1 0<r<1

1
5 = | = La+Z41)=—x357=0357;
£ osslg)l 120} 08351 10( 2 )= 10

2
Q" = sup |Q(1)| = sup 5 cos( ) =0.4;

0<t<1 0<t<1

2
3
X = sup [y(®)| = sup Z(l +1+1)=-=0.75.

0<r<1 0<t<1

Choose r > 0.5, then we have

)?

1y s 1y 1 1,4 18
(14452 )75 x04x 2 AV VA SO LA P | =04016<
5 ré) TrQ) %) %)
Moreover,
BE (ba b, Lxdy
(0.75><O.4+O.4><O.8O79><((4)5 R ))(4)3 (1455 3)(4)5 = 0.097 <1
I'(s) TE/VIGE) 5 TG

Now, by using Theorem 3.2, it is deduced that the fractional hybrid integro-differential problem
(4.1), (4.2) has a solution.

5. Conclusions

Hybrid fractional integro-differential equations have been considered more important and served as
special cases of dynamical systems. In this paper, we introduced a new class of the hybrid ¢-Caputo
fractional integro-differential equations. By using famous hybrid fixed point theorem due to Dhage,
we have developed adequate conditions for the existence of at least one solution to the hybrid problem
(1.1), (1.2). The respective results have been verified by providing a suitable example.
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