AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459.

Research article Special Issues

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations

1 College of Science, Tianjin University of Technology, Tianjin 300384, China
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

Special Issues: Nonlinear Differential Equations and Applications

## Abstract    Full Text(HTML)    Figure/Table    Related pages

In this paper, we discuss the existence of solutions for a nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem due to Dhage. Finally, we give an example to illustrate our main result.
Figure/Table
Supplementary
Article Metrics

Citation: Dehong Ji, Weigao Ge. A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459

References

• 1. B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equation, Nonlinear Anal. Hybrid Syst., 4 (2010), 414-424.
• 2. Y. Zhao, S. Sun, Z. Han, et al. Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312-1324.
• 3. S. Sun, Y. Zhao, Z. Han, et al. The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4961-4967.
• 4. B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809.
• 5. B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclusions, Topol. Methods Nonlinar Anal., 44 (2014), 229-238.
• 6. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, Sci. World J., 2014 (2014), 426438.
• 7. K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ., 2015 (2015), 183.
• 8. B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631-1640.
• 9. Z. Ullah, A. Ali, R. A. Khan, et al. Existence results to a class of hybrid fractional differential equations, Matriks Sains Mat. (MSMK), 1 (2018), 13-17.
• 10. M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fractional hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163.
• 11. Z. Baitiche, K. Guerbati, M. Benchohra, et al. Boundary value problems for Hybrid Caputo fractional differential equations, Mathematics, 7 (2019), 1-11.
• 12. K. Zhang, J. Wang, W. Ma, Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Funct. Space., 2018 (2018), 1-10.
• 13. J. Jiang, D. O'Regan, J. Xu, et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 1-18.
• 14. J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2015), 85-90.
• 15. K. Zhang, Z. Fu, Solutions for a class of Hadamard fractional boundary value problems with signchanging nonlinearity, J. Funct. Space., 2019 (2019), 1-7.
• 16. S. NageswaraRao, M. Singh, M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2020 (2020), 1-25.
• 17. Z. Baitiche, C. Derbazi, On the solvability of a fractional hybrid differential equation of hadamard type with dirichlet boundary conditions in Banach algebras, Commun. Optim. Theory, 2020 (2020), 9.
• 18. M. Jamil, R. A. Khan, K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Bound. Value Probl., 2019 (2019), 77.
• 19. R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460-481.
• 20. R. Almeida, A. B. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the ψ-Caputo derivative and their applications, Math. Methods Appl. Sci., 2019. Available from: http://doi.org/10.1002/mma.5678.