
AIMS Mathematics, 2020, 5(6): 71227144. doi: 10.3934/math.2020456
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Some New $(p_1p_2,q_1q_2)$Estimates of Ostrowskitype integral inequalities via npolynomials stype convexity
1 School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
3 Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, Vlora, Albania
4 Department of mathematics, Government University, Faisalabad, Pakistan
5 Department of Mathematics, Huzhou University, Huzhou 313000, China
6 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China
Received: , Accepted: , Published:
References
1. F. H. Jackson, On a qdefinite integrals, Q. J. Pure Appl. Math., 41 (1910), 193203.
2. M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum HermiteHadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 120.
3. L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional qcalculus theory, J. Funct. Space., 2020 (2020), 19.
4. S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 112.
5. J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 60736086.
6. H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q_{1}q_{2}Ostrowskitype inequalities within a class of npolynomial prevexity of function, J. Funct. Space., 2020 (2020), 113.
7. M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new qintegral identity with applications, Adv. Differ. Equ., 2020 (2020), 115.
8. J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 113.
9. J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 119.
10. M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for qdifferentiable convex functions, J. Math. Inequal., 10 (2016), 10131018.
11. H. Kalsoom, J. D. Wu, S. Hussain, et al. Simpson's type inequalities for coordinated convex functions on quantum calculus, Symmetry, 11 (2019), 116.
12. Y. P. Deng, M. U. Awan, S. H. Wu, et al. Quantum integral inequalities of Simpsontype for Strongly preinvex functions, Mathematics, 7 (2019), 114.
13. Y. P. Deng, H. Kalsoom, S. H. Wu, Some new quantum HermiteHadamardtype estimates within a class of generalized (s, m)preinvex functions, Symmetry, 11 (2019), 115.
14. M. Tunç, E. Göv, (p, q)Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 113.
15. S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials stype convexixity with applications, Adv. Differ. Equ., 2020 (2020), 120.
16. Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG and GAconvex function, AIMS Math., 5 (2020), 50125030.
17. T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for pconvexity within intervalvalued functions, Adv. Differ. Equ., 2020 (2020), 117.
18. M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of gconvex functions with applications, RACSAM, 114 (2020), 112.
19. S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and FejérHadamard inequaities associated with exponentially (s, m)convex functions, J. Funct. Space., 2020 (2020), 110.
20. M. U. Awan, S. Talib, M. A. Noor, et al. Some trapeziumlike inequalities involving functions having strongly npolynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 19.
21. T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)convex functions and applications, Adv. Differ. Equ., 2020 (2020), 127.
22. Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of HermiteHadamardFejér inequalities via ηconvex functions, AIMS Math., 5 (2020), 51065120.
23. M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρconvex functions and associated integral inequalities, AIMS Math., 5 (2020), 46624680.
24. Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via npolynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 110.
25. P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified hconvex function, AIMS Math., 5 (2020), 66206638.
26. S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 115.
27. S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 58595883.
28. G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the twoparameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 117.
29. J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843853.
30. M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255 271.
31. M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821841.
32. T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 45124528.
33. M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 49314945.
34. S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 35253546.
35. M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for sconvex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 114.
36. H. GeJiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgsconvex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 61086123.
37. I. Abbas Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensentype inequality and related results for harmonic convex functions, AIMS Math., 5 (2020), 64046418.
38. Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 7793.
39. A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the HermiteHadamard integral inequality via a Green function, AIMS Math., 5 (2020), 60876107.
40. M. U. Awan, N. Akhtar, S. Iftikhar, et al. New HermiteHadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 112.
41. M. A. Latif, S. Rashid, S. S. Dragomir, et al. HermiteHadamard type inequalities for coordinated convex and qausiconvex functions and their applications, J. Inequal. Appl., 2019 (2019), 133.
42. H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of HermiteHadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 60306042.
43. X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and FejérHadamard inequalities for mconvex function, AIMS Math., 5 (2020), 63256340.
44. S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629 2645.
45. S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335341.
46. T. Toplu, M. Kadakal, İ. İşcan, On npolynomial convexity and some related inequalities, AIMS Math., 5 (2020), 13041318.
47. M. A. Latif, S. Hussain, S. S. Dragomir, New Ostrowski type inequalities for coordinated convex functions, Transylv. J. Math. Mech., 4 (2012), 125136.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)