
AIMS Mathematics, 2020, 5(6): 62116220. doi: 10.3934/math.2020399
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The modified quadrature method for Laplace equation with nonlinear boundary conditions
School of Mathematics, Chengdu Normal University, Chengdu, Sichuan, 611130, China
Received: , Accepted: , Published:
References
1. S. Dohr, C. Kahle, S. Rogovs, et al. A FEM for an optimal control problem subject to the fractional Laplace equation, Calcolo, 56 (2019), 121.
2. C. Kuo, W. Yeih, C. Ku, et al. The method of twopoint angular basis function for solving Laplace equation, Eng. Anal. Bound. Elem., 106 (2019), 264274.
3. P. Dehghan, M. Dehghan, On the Numerical Solution of Logarithmic Boundary Integral Equations Arising in Laplace's Equations Based on the Meshless Local Discrete Collocation Method, Adv. Appl. Math. Mech., 11 (2019), 807837.
4. M. A. Jankowska, Interval NinePoint Finite Difference Method for Solving the Laplace Equation with the Dirichlet Boundary Conditions, In: Parallel Processing and Applied Mathematics, Springer, Cham, 2016, 474484.
5. X. Li, J. Oh, Y. Wang, et al. The method of transformed angular basis function for solving the Laplace equation, Eng. Anal. Bound. Elem., 93 (2018), 7282.
6. K. Ruotsalainen, W. Wendland, On the boundary element method for some nonlinear boundary value problems, Numer. Math., 53 (1988), 299314.
7. K. Maleknejad, H. Mesgaran, Numerical method for a nonlinear boundary integral equation, Appl. Math. Comput., 182 (2006), 10061009.
8. P. Assari, M. Dehghan, Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions, Int. J. comput. Math., 96 (2019), 170198.
9. X. Chen, R. Wang, Y. Xu, Fast FourierGalerkin Methods for Nonlinear Boundary Integral Equations, J. Sci. Comput., 56 (2013), 494514.
10. I. H. Sloan, A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal., 8 (1988), 105122.
11. Y. Yan, The collocation method for firstkind boundary integral equations on polygonal regions, Math. Comput., 54 (1990), 139154.
12. H. Li, J. Huang, Highaccuracy quadrature methods for solving nonlinear boundary integral equations of axisymmetric Laplace's equation, Comput. Appl. Math., 37 (2018), 68386847.
13. S. Christiansen, Numerical solution of an integral equation with a logarithmic kernel, BIT., 11 (1971), 276287.
14. M. S. Abou ElSeoud, Numerische behandlung von schwach singulären Integralgleichungen 1. Art. Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, Darmstadt, 1979.
15. J. Saranen, The modified quadrature method for logarithmickernel integral equations on closed curves, J. Integral Equ. Appl., 3 (1991), 575600.
16. P. M. Anselone, J. Davis, Collectively Compact Operator Approximation Theory and applications to integral equations, Prentice Hall, 1971.
17. H. Li, J. Huang, A novel approach to solve nonlinear Fredholm integral equations of the second kind, SpringerPlus, 5 (2016), 19.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)