AIMS Mathematics, 2020, 5(6): 5521-5540. doi: 10.3934/math.2020354

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On q-steepest descent method for unconstrained multiobjective optimization problems

1 College of Economics, Shenzhen University, Shenzhen 518060, China
2 Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
3 Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, India
4 Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur 208016 India
5 DST-Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India

The q-gradient is the generalization of the gradient based on the q-derivative. The q-version of the steepest descent method for unconstrained multiobjective optimization problems is constructed and recovered to the classical one as q equals 1. In this method, the search process moves step by step from global at the beginning to particularly neighborhood at last. This method does not depend upon a starting point. The proposed algorithm for finding critical points is verified in the numerical examples.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Marusciac, On Fritz John type optimality criterion in multi-objective optimization, Anal. Numer. Theor. Approx., 11 (1982), 109-114.

2. G. Palermo, C. Silvano, S. Valsecchi, et al. A system-level methodology for fast multi-objective design space exploration, ACM, New York, 2003.

3. M. Tavana, A subjective assessment of alternative mission architectures for the human exploration of mars at NASA using multicriteria decision making, Comput. Oper. Res., 31 (2004), 1147-1164.

4. H. Eschenauer, J. Koski, A. Osyczka, Multicriteria design optimization: Procedures and applications, Springer-Verlag, Berlin, 1990.

5. I. Das, J. E. Dennis, Normal-Boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim.,8 (1998), 631-657.

6. I. Y. Kim, O. L. de Weck, Adaptive weighted-sum method for bi-objective optimization: Pareto front generation, Struct. Multidisc. Optim., 29 (2005), 149-158.

7. Y. Fu, U. M. Diwekar, An efficient sampling approach to multiobjective optimization, Ann. Oper. Res., 132 (2004), 109-134.

8. A. Jüschke, J. Jahn, A. Kirsch, A bicriterial optimization problem of antenna design, Comput. Optim. Appl., 7 (1997), 261-276.

9. T. M. Leschine, H. Wallenius, W. A. Verdini, Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions, Eur. J. Oper. Res., 56 (1992), 278-289.

10. J. Fliege, OLAF-A general modeling system to evaluate and optimize the location of an air polluting facility, OR Spektrum, 23 (2001), 117-136.

11. E. Carrizosa, J. B. G. Frenk, Dominating sets for convex functions with some applications, J. Optim. Theory Appl., 96 (1998), 281-295.

12. G. W. Evan, An overview of techniques for solving multiobjective mathematical programs, Manage. Sci., 30 (1984), 1268-1282.

13. D. Prabuddha, J. B. Ghosh, C. E. Wells, On the minimization of completion time variance with a bicriteria extension, Oper. Res., 40 (1992), 1148-1155.

14. D. J. White, Epsilon-dominating solutions in mean-variance portfolio analysis, Eur. J. Oper. Res., 105 (1998), 457-466.

15. M. G. C. Tapia, C. A. C. Coello, Applications of multi-objective evolutionary algorithms in economics and finance: A survey, IEEE Congr. Evol. Comput., (2007), 532-539.

16. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, Evol. Comput., 8 (2000), 173-195.

17. M. Ehrgott, Multicriteria optimization, Springer, Berlin, 2005.

18. K. Miettinen, M. M. Makelä, Interactive bundle-based method for nondifferentiable multiobjeective optimization: NIMBUS, Optimization, 34 (1995), 231-246.

19. L. M. G. Drummond, B. F. Svaiter, A steepest descent method for vector optimization, J. Comput. Appl. Math., 175 (2005), 395-414.

20. J. Fliege, L. M. G. Drummond, B. F. Svaiter, Newton's method for multiobjective optimization, SIAM J. Optim., 20 (2009), 602-626.

21. A. Cauchy, Méthode générale pour la résolution des systèms d'équations simultanées, Comp. Rend. Sci. Paris, 25 (1847), 536-538.

22. H. Zhao, J. Zheng, W. Deng, et al. Semi-supervised broad learning system based on manifold regularization and broad network, IEEE Trans. Circuits Syst., 67 (2020), 983-994.

23. W. Deng, J. Xu, Y. Song, et al. An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspir. Com., (2020) 1-10.

24. W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem, IEEE access, 7 (2019), 20281-20292.

25. W. Deng, H. Liu, J. Xu, et al. An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas., 2020.

26. S. K. Mishra, B. Ram, Introduction to Unconstrained Optimization with R, Springer Nature, Singapore, 2019.

27. J. Fliege, B. F. Svaiter, Steepest descent methods for multicriteria optimization, Math. Method Oper. Res., 51 (2000), 479-494.

28. T. D. Chuong, J. C. Yao, Steepest descent methods for critical points in vector optimization problems, Appl. Anal., 91 (2012), 1811-1829.

29. J. Fliege, A. I. F. Vaz, L. N. Vicente, Complexity of gradient descent for multiobjective optimization, Optim. Method Softw., 34 (2019), 949-959.

30. F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy Soc. Edin., 46 (1908) 253-281.

31. F. H. Jackson, On q-Definite Integrals, Pure Appl. Math. Q., 41 (1910), 193-203.

32. A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.

33. P. M. Rajković, M. S. Stanković, S. D. Marinković, Mean value theorems in q-calculus, Mat. Vesn., 54 (2002), 171-178.

34. M. E. Ismail, D. Stanton, Applications of q-Taylor theorems, J. Comput. Appl. Math., 153 (2003), 259-272.

35. S. C. Jing, H. Y. Fan, q-Taylor's formula with its q-remainder, Commun. Theor. Phys., 23 (1995), 117.

36. P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in qcalculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.

37. H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281-300.

38. G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650-665.

39. L. Abreu, A q-sampling theorem related to the q-Hankel transform, Proc. Am. Math. Soc., 133 (2005), 1197-1203

40. T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Am. Math. Soc., 333 (1992), 445-461.

41. J. Ablinger, A. K. Uncu, qFunctions-A Mathematica package for q-series and partition theory applications, arXiv preprint arXiv:1910.12410, 2019.

42. A. C. Soterroni, R. L. Galski, F. M. Ramos, The q-gradient vector for unconstrained continuous optimization problems, In: Operations research proceedings 2010. Springer-Verlag Berlin Heidelberg, (2011), 365-370.

43. A. C. Soterroni, R. L. Galski, F. M. Ramos, The q-gradient method for global optimization, arXiv:1209.2084, 2012.

44. A. C. Soterroni1, R. L. Galski, M. C. Scarabello1, et al. The q-G method: A q-version of the steepest descent method for global optimization, SpringerPlus, 4 (2015), 647.

45. A. C. Soterroni, R. L. Galski, F. M. Ramos, Satellite constellation design using the q-G global optimization method, Third World Conference on Complex Systems (WCCS), IEEE, (2015), 1-6.

46. U. M. Al-Saggaf, M. Moinuddin, M. Arif, et al. The q-least mean squares algorithm, Signal Process., 111 (2015), 50-60.

47. A. Sadiq, S. Khan, I. Naseem, et al. Enhanced q-least mean square, Circ. Syst. Signal Process., 38 (2019), 4817-4839.

48. P. M. Rajković, S. D. Marinković, M. S. Stanković, On q-Newton-Kantorovich method for solving systems of equations, Appl. Math. Comput., 168 (2005), 1432-1448.

49. S. K. Chakraborty, G. Panda, Newton like line search method using q-calculus, In: D. Giri, R. N. Mohapatra, H. Begehr, M. Obaidat, Communications in Computer and Information Science, Singapore: Springer, 2017.

50. S. K. Mishra, G. Panda, M. A. T. Ansary, et al. On q-Newton's method for unconstrained multiobjective optimization problems, J. Appl. Math. Comput., (2020), 1-20.

51. Ž. Povalej, Quasi-Newton's method for multiobjective optimization, J. Comput. Appl. Math., 255 (2014), 765-777.

52. K. K. Lai, S. K. Mishra, B. Ram, On q-Quasi-Newton's Method for Unconstrained Multiobjective Optimization Problems, Mathematics, 8 (2020), 616.

53. M. A. T. Ansary, G. Panda, A sequential quadratically constrained quadratic programming technique for a multi-objective optimization problem, Eng. Optim., 51 (2019), 22-41.

54. W. E. Karush, Minima of functions of several variables with inequalities as side conditions. PhD thesis, Univ. Chicago, 1939. 55. M. A. Ansary, G. Panda, A modified quasi-Newton method for vector optimization problem, Optimization, 64 (2015), 2289-2306.

55. M. A. T. Ansary, G. Panda, A modified quasi-Newton method for vector optimization problem, Optimization, 64 (2015), 2289-2306.

56. K. Deb, L. Thiele, M. Laumanns, et al. Scalable multi-objective optimization test problems, IEEE, 1 (2002), 825-830.

57. O. P. Ferreira, M. S. Louzeiro, L. F. Prudente, Iteration-complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds, J. Optim. Theory Appl., 184 (2020), 507-533.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved