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1. Introduction

In multiobjective problems, several objective functions have to be minimized or maximized
simultaneously. There are conflicts between the objective functions. It is not possible to get a single
point that minimizes all objective functions simultaneously. Therefore, the concept of optimality is
replaced by the concept of Pareto optimality, a measure of efficiency in multiobjective problems [1].
A point is called Pareto-optimal or efficient, if there does not exist a different point with same or
smaller objective function values such that there is a decrease in at least one objective function value.
Applications of such optimization problems can be found in space exploration [2, 3], engineering [4],
truss optimization [5, 6], design [7, 8], environmental analysis [9, 10], statistics [11], management
science [12–14], economic sciences [15], etc.
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There are many solution strategies for finding a Pareto optimal point of unconstrained
multiobjective optimization problems (UP). One popular approach is to reformulate (UP) as a scalar
optimization problem whose objective function is a weighted linear combination of all objective
functions. However, this approach may yield unbounded scalar problems [20], if the weighted values
are not properly chosen. Another popular approach is the evolutionary algorithm which searches for a
Pareto optimum in a set of candidate solutions with some genetic operator. No convergence proofs are
known in this case, and empirical results show that convergence is quite slow [16]. Another general
solution strategy for multiobjective optimization problems is ε-constrained method [17]. A drawback
of this method is that ε may be selected so that the feasible region becomes empty. Other
parameter-free multiobjective optimization techniques use the ordering of the different criteria, that is,
an ordering of the objective functions based on priority. In this case, the ordering has to be
prespecified. Moreover, the corresponding optimization process is usually augmented by an
interactive procedure [18]. Another kind of approach is descent methods, which extend the traditional
descent methods for scalar optimization to solve (UP), such as the gradient descent method [19],
Newton’s method [10, 20], etc. A remarkable property of this method is that it is a parameter free
approach. This is quite different from the weighted approach for (UP). With this method, there is no
need to analyze the prior information including the relationships and conflicting between the
objectives. Note that such information is very important for choosing the weights for the weighted
method. Specifically, an example is shown in [20] that the weighted method fails for a large range of
weights which leads to unbounded weighted objective, but a descent method works well with any
starting point.

The steepest descent method is one of the oldest and simplest descent methods to minimize the
real-valued functions proposed by Baron Augustin-Louis Cauchy (1789–1857) [21] in 1847. Cauchy
developed the gradient method to solve nonlinear equations. The idea of this method is that the
continuous function value always decreases if the negative descent direction is considered. Almost,
all optimization books [26] discuss this method to learn advanced optimization algorithms. However,
this method is used to solve system of ridge regression or regularized least squares [22], also
see [23–25]. The steepest descent method for single-objective problems was extended for
unconstrained multiobjective optimization problems (UP) [19,27]. Further, the method is presented to
find critical points of (UP) using maps from a Euclidean space to a Banach space [28]. Recently, the
descent method for (UP) decreases the gradient at the rate of 1

√
k

regardless of the starting point. This
rate of convergence is derived for obtaining some point satisfying weak Pareto-optimality [29].

On the other hand, quantum calculus (briefly, q-calculus) is dedicated to the study of calculus
regardless of the limits. In fact, by introducing the parameter q, we consider q-analogue of calculus
concepts such that they can be recaptured for the case when q → 1. Euler was the founder of this
branch of mathematics, by using the parameter q in Newton’s work of infinite series. The q-calculus
is one of the research interests in the field of mathematics and physics for the last few decades. The
q-analogue of ordinary derivative was first proposed by F.H. Jackson [30, 31]. Its wide applications
can be seen in several areas such as operator theory [32], mean value theorems of q-calculus [33],
q-Taylor formula and its remainder [34, 35], fractional integrals and derivatives [36], integral
inequalities [37], variational calculus [38], transform calculus [39], sampling theory [40], etc.
Recently, a qFunctions Mathematica package is developed for q-series, and partition theory
applications [41].
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A q-version of the classical steepest descent method has been developed to solve single objective
unconstrained optimization problems [42–45]. In this method, the quantum value q acts as a dilation
parameter that controls the balance between global and local search direction in the context of
q-gradient. The q-LMS (Least Mean Square) algorithm is proposed which utilizes the q-gradient to
compute the secant of the cost function instead of the tangent [46]. The algorithm takes larger steps
towards the optimum solution and achieves a higher convergence rate. A new class of stochastic
gradient algorithm based on q-calculus is developed to enhance the q-LMS algorithm. The proposed
approach utilizes a parameterless concept of error correlation energy, and normalization of signal for
high convergence, stability, and low steady-state error. The q-Taylor formula for the functions of
several variables and mean value theorems in q-calculus are utilized for solving the systems of
equations [48]. In multiobjective optimization, Newton’s method using q-calculus [49] is extended for
unconstrained multiobjective optimization problems [50]. Following this trend, the Quasi-Newton’s
method [51] is further extended for solving (UP) [52] where components of the Hessian matrix are
computed using q-calculus.

The goal of this paper is to present the q-steepest descent method, a generalization of the steepest
descent method for (UP) [10, 27]. A subproblem is formulated using the quadratic approximation
of all functions at every iteration, and a feasible descent direction due to q-gradient is obtained as a
solution of this subproblem [53]. The ordering of the objective functions is avoided. Instead of the
classical gradient, the q-gradient of the objective function is used in the proposed algorithm to find
critical points and (weak) efficient points and its theoretical results are validated by giving convergence
proofs. The advantage of using q-gradient is that it allows the steepest descent direction to perform in a
more diverse set of directions which makes it possible to escape local critical points. Several examples
are presented where q-analog is implemented to shift the search process from global in the beginning
to almost local search in the end. To evaluate the performance of the proposed method, we compare it
with [28] and the weighted sum method. In general, the involvement of q-calculus effectively reduces
the number of iterations to reach the critical point or (weak) efficient points. Thus, the proposed method
is more promising to solve convex problems, non-convex problems, and multimodal multiobjective
optimization problems.

The paper is arranged as follows: Section 2 recalls concepts related to q-calculus and multiobjective
optimization. In Section 3, the subproblem for the descent direction using q−derivative is presented.
The proposed algorithm and convergence analysis with numerical examples are provided in Section 4.
Comparison with the existing method is done in Section 5. The conclusion is given in the last section.

2. Preliminaries

Denote R as the set of real numbers, Rn
+ := {x ∈ Rn|xi ≥ 0, ∀ i = 1, . . . ,m}, and as Rn

++ := {x ∈
Rn|xi > 0, ∀ i = 1, . . . ,m}. A continuous function on any interval not containing 0, is called the
continuous q-differentiable function. Let the q-integer [n] be defined as [n] =

1−qn

1−q , for n ∈ N, and the
derivative of xn with respect to x be given as [n]xn−1, then the q-derivative [30] is given as:

Dq f (x) =

 f (qx)− f (x)
qx−x , x , 0, q , 1,

d f (x)
dx , otherwise.

(2.1)
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The q-derivative reduces to an ordinary derivative as q equals 1. The first-order partial
q-derivative [42] of function f with respect to the variable xi, where i = 1, . . . , n is:

Dqi,xi f (x) =

 f (x1,...,qi xi,...,xn)− f (x1,...,xi,...,xn)
qi xi−xi

, xi , 0, qi , 1,
∂ f (x)
∂xi

, otherwise.
(2.2)

The q-gradient is the vector of n first-order partial q-derivatives of f is:

∇q f (x)T =
[
Dq1,x1 f (x) . . . Dqi,xi f (x) . . . Dqn,xn f (x)

]
, (2.3)

where the parameter q is a vector q = (q1, . . . , qi, . . . , qn) ∈ Rn. Consider the following unconstrained
multiobjective optimization problem (UP):

minimize ( f1(x), . . . fm(x)), x ∈ Rn, (2.4)

where fi : Rn → R, ∀ i = 1, . . . ,m are real-valued continuously q-differentiable function. For two
vectors x, y ∈ Rn, we denote x = y if and only if xi = yi ∀ i = 1, . . . ,m, x = y if and only if xi ≥ yi

∀ i = 1, . . . ,m, x ≥ y if and only if xi ≥ yi and x , y, ∀ i = 1, . . . ,m, x > y if and only if xi > yi

∀ i = 1, . . . ,m. A feasible solution x∗ ∈ X ⊆ Rn is called a locally (weakly) efficient solution [20] if
there is a neighborhood W ⊆ X of x∗ is an (weakly) efficient solution, then fi(x∗) is called a locally
(weakly) non-dominated point. Let X ⊂ Rn be a convex set, and fi : X → Rm is called Rm-convex
if fi, ∀ i = 1, . . . ,m is componentwise-convex [17]. If the domain of the multiobjective optimization
problem is a convex set and the objective functions are convex component-wise then critical point
will be the weak efficient point, and if the objective functions are strictly convex component-wise
then critical point will be efficient point. The relationship between critical point and efficient point is
discussed in [20]. The classical gradient is obtained in the limit of qi → 1, for all i = 1, . . . ,m. The
following example is from [49].

Example 1. Consider a function f : R2 → R, where f (x, y) = xy2 + x4. Then, the q-gradient [52] is
computed as:

∇q f (x)T =
[
y2 + (1 + q)(1 + q2)x3 (1 + q)xy

]
.

3. The q-steepest descent for multiobjective optimization

The transpose of Jacobian matrix of q-partial derivative denoted as JqF(x) for the vector valued
objective functions F is:

JqF(x) =


Dq1,x1 f1(x) Dq2,x2 f1(x) . . . Dqn,xn f1(x)
Dq1,x1 f2(x) Dq2,x2 f2(x) . . . Dqn,xn f2(x)

. . . . . . . . .

Dq1,x1 fm(x) Dq2,x2 fm(x) . . . Dqn,xn fm(x)

 . (3.1)

Note that a variant q ∈ (0, 1) has been considered in the above matrix. The range of the linear
mapping given by the Jacobian matrix JqF(x) is range(JqF(x)). A necessary condition for a (local)
weak Pareto minimizer x ∈ Rn is given as:

range(JqF(x)T ) ∩ (−R++)m = φ. (3.2)
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Using Gordan’s theorem of alternative one can show that x is a critical point if there exists λ ∈ Rm
+ ,

λ , 0 such that

m∑
i=0

λi∇q fi(x) = 0 (3.3)

holds (see Lemma 3.1 of [55]). In the literature (3.2) or (3.3) is often considered as a necessary
condition of weak efficiency. The points satisfying (3.2) are called Pareto critical points. If a point
x ∈ Rn is not Pareto critical then there exists a descent direction dq ∈ R

n for F satisfying

∇qF(x)dq ∈ (−R++)m. (3.4)

If dq ∈ R
n is not a descent direction, then

∇qF(x)dq < (−R++)m. (3.5)

The descent gradient method for (UP) takes the schema xk+1 = xk + αkdk
q, where αk ∈ (0, 1] is

the step-length computed by Armijo-Wolfe line search with backtracking. For single-objective case,
the negative q-gradient −∇q f (x) is the steepest descent direction, and it is the solution of quadratic
programming whose objective function is an approximation to f (x + dq) − f (x), that is,

min
dq∈Rn
∇q fi(x)T dq +

1
(1 + q)

‖dq‖
2.

For (UP) case, the subproblem introduced in [27], is an approximation to the least reduction of all
objective functions, which is given as:

min
dq∈Rn

max
i=1,...,m

∇q fi(xk)T dq +
1

1 + q
‖dq‖

2, (3.6)

where q ∈ (0, 1), and the search direction dk
q is the solution of (3.6). The min-max subproblem (3.6) is

depicted in the form of q-differentiable quadratic optimization problem (q-DQOP) with linear
inequality constraints as:

arg min
dq∈Rn,t∈R

t +
1

(1 + q)
‖dq‖

2, q ∈ (0, 1),

subject to ∇q fi(xk)T dq ≤ t, i = 1, . . . ,m.

Note that the term 1
(1+q)‖dq‖

2 for q ∈ (0, 1) in the objective function ensures that the problem is
bounded, and (dk

q, t
k) are the optimial solution of the above problem (q-DQOP). The above sub-problem

is a convex programming problem and satisfies Slater’s constraint qualification since for t = 1, and dq =

0, the above inequalities become strict inequalities. The Karush-Kuhn-Tucker (KKT) conditions [54]
for (q-DQOP) at xk are:
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dk
q = −

m∑
i=1

λk
i∇q fi(xk), (3.7)

∇q fi(xk)T dk
q ≤ tk, i = 1, . . . ,m, (3.8)

m∑
i=1

λk
i = 1, λk

i ≥ 0, (3.9)

λk
i (∇q fi(xk)T dq − tk) = 0, i = 1, . . . ,m, (3.10)

Note that λk
i ≥ 0, where i = 1, . . .m, are the Lagrange multipliers associated with linear inequality

constraints of (3.7). Taking summation of (3.10) over i from 1 to m, and from (3.7), we get

tk =

m∑
i=1

λk
i∇q fi(xk)T dk

q = −‖dk
q‖

2. (3.11)

The solution of the (q-DQOP) is related to Pareto critical as stated in [27].

Lemma 1. [29] Let (dk
q, t

k) be the solution of (q-DQOP)

1. If xk is Pareto critical, then dk
q = 0 ∈ Rn, and tk = 0.

2. If xk is not Pareto critical, then

tk ≤ −
1

(1 + q)
‖dk

q‖
2 < 0; q ∈ (0, 1), (3.12)

∇q fi(xk)T dk
q ≤ tk, i = 1, . . . ,m. (3.13)

Proof. If xk is Pareto critical, then there is no dk
q such that ∇q fi(xk)T dk

q < 0, ∀ i = 1, . . . ,m, otherwise
Part 2 would not be satisfied, and for any fix ī, we have tk ≥ ∇q fī(xk)T dk

q. Part 1 of this lemma holds
when (tk, dk

q) = (0, 0), is a feasible point of (q-DQOP). The constraint of (q-DQOP) is equivalent
to (3.13). Since dq = 0, and t = 0, then we have (dk

q, t
t) ≤ (0, 0), thus (3.12) holds. If xk is not a Pareto

critical, then there exists a descent search direction dk
q such that ∇ fi(xk)T dk < 0, ∀ i = 1, . . . ,m to get

tk < 0. �

Suppose (tk, dk
q) is the solution of the sub-problem and dk

q , 0, following the arguments in [50, 55]
we select a suitable step length. Suppose θk

i is the angle between ∇ f k
i and dk

q. If cos2(θk
i ) ≥ δ, where

δ > 0 holds for all i then we select αk satisfying

fi(xk+1) − fi(xk) ≤ β1αk

m∑
i=1

λk
i (∇q fi(xk))T dq(xk), (3.14)

and

β2

m∑
i=1

λk
i (∇q fi(xk))T dq(xk) ≤

m∑
i=1

λk
i∇q fi(xk+1)dq(xk), (3.15)

where β ∈ (0, 1), β1 < β2 < 1, and α ∈ (0, 1]. If cos2(θk
j) < δ for any j then αk satisfying (3.14)

is selected. The last inequality is a criterion for accepting a step-length in the multiobjective descent
direction. We start with α = 1, and if the above condition is not satisfied, then set α := α

2 , and process
will be continued.

AIMS Mathematics Volume 5, Issue 6, 5521–5540.



5527

Proposition 1. Let β1 ∈ (0, 1), xk ∈ X ⊆ Rn, and dk
q ∈ X. If fi : Rn → R for i = 1, . . . ,m are

continuously q-differentiable functions, and ∇q fi(xk)dk
q < 0, for i = 1, . . . ,m then there exists ε > 0

such that fi(xk + αdk) ≤ fi(xk) + β1α∇q fi(xk)dk
q for all i = 1, . . . ,m and α ∈ (0, ε].

Proof. Since fi for all i ∈ 1, . . . ,m, are q-differentiable functions, then

fi(xk + αdk
q) = fi(xk) + α(∇q fi(xk)dk

q + R(t)), (3.16)

where lim
t→0

R(t) = 0. For β1 ∈ (0, 1), we have

(∇q fi(xk))T dq < β1(∇q fi(xk))T dq, (3.17)

where i = 1, . . . ,m. Combining (3.16) and (3.17), we get

fi(xk + αdk
q) ≤ fi(xk) + β1α(∇q fi(xk)dk

q, (3.18)

for all α ∈ (0, ε], i = 1, . . . ,m. �

4. Convergence analysis and numerical examples

Let us now summarize the steepest descent method for multiobjective proposed in [19] based on
q-derivative which is given in Algorithm 1 as:

Algorithm 1 q-Steepest Descent for Unconstrained Multiobjective Optimization (q-SDUP)
Result: Critical Point or (Weak) Efficient Points
Data: Choose β1 ∈ (0, 1), x0 ∈ Rn, error of tolerance ε1, ε2, small positive number δ > 0, q ∈ (0, 1)
for k=1,2,. . . do

Solve (q-DQOP) and compute (dk
q, t

k, λk)
for i=1,. . . ,m do

Choose step-length αk ∈ (0, 1] such that xk + αkdk
q ∈ X

if cos2(θk
j) >= δ then

choose αk satisfying (3.14) and (3.15).
else

Choose αk satisfying (3.14).
end

end
Update xk+1 = xk + αkdk

q

if |t(xk+1)| ≤ ε1 or ‖dq(xk+1)‖ ≤ ε2 then
Stop

end
end

Algorithm 1 ends up with a critical point or produces (weak) efficient points. In this case, if
cos2(θk

i ) > δ, where i = 1, . . . ,m is assumed, then assumptions of Theorem 1 are satisfied and every
accumulation point of the sequence {xk} will be a (weak) efficient point otherwise assumptions of
Theorem 2 are considered and the accumulation point becomes a critical point of (UP).
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Theorem 1. Let fi where i = 1, . . . ,m be continuously q-differentiable on a set X ⊆ Rn for β1, q ∈ (0, 1)
and {xk} be the sequence updated by xk+1 = xk + αkdq(xk), where αk satisfies

fi(xk+1) − fi(xk) ≤ β1αk

m∑
i=1

λk
i (∇q fi(xk))T dq(xk), (4.1)

for all i = 1, . . . ,m. Suppose that L0 = {x ∈ X : f (x) < f (x0)} is bounded and convex, where x0 ∈ X
is a starting point. The function fi(x) is bounded below for at least one i ∈ {1, . . . ,m}. Then, the
accumulation point of {xk} is a critical point x∗ of (UP).

Proof. We know that

fi(xk+1) − fi(xk) ≤ β1αk

m∑
i=1

λk
j(∇q fi(xk))T dq(xk).

Since
∑m

i=1 λ
k
i = 1, where λk

i ≥ 0, then

fi(xk+1) − fi(xk) ≤ β1αk max
i=1,...m

(
(∇q fi(xk))T dq(xk)

)
,

that is,

fi(xk+1) − fi(xk) < β1αk max
i=1,...m

[
(∇q fi(xk))T dq(xk) +

1
(1 + q)

‖dq‖
2
]

= β1αkdk
q.

We obtain

fi(xk+1) < fi(x0) + c
k∑

j=0

αidq(xi) for all i = 1, . . . ,m.

For at least one i1 from i = 1, . . . ,m for which fi(x) is bounded below such that fi1(x) > −∞ for all
x ∈ X. The sequence { fi1(xk)} is also monotonically decreasing sequence and bounded below so that
fi1(xk) converges to fi1(x∗) as k → ∞ where fi1(x∗) > −∞. We obtain the inequality as

fi1(x0) − fi1(xk+1) > −β1

k∑
j=0

α jdq(x j).

As k → ∞, we have

β1

∞∑
j=0

α j(−dq(x j)) < fi1(x0) − fi1(x∗) < ∞ (4.2)

Since dq(x j) ≤ 0 for all j due to [10, 52], and β1
∑∞

j=0 α j(−dq(x j)) is finite. Thus, we obtain
β1αk(−dq(xk)) → 0 as k → ∞. Since the step length is bounded above so αk → ∞ for some k implies
L0 unbounded which is contradiction to the assumption. If αk ≥ β1 for all k and for some β1 ∈ (0, 1),
then we get −dq(xk) → 0 as k → ∞. Note that L0 is bounded sequence, and has at least one
accumulation point. Let {R∗1,R

∗
2, . . . ,R

∗
r} be the set of accumulation points {xk}. Since R∗s is an

accumulation point for every s ∈ {1, 2, . . . , r}, and dq is a continuous function, then dq(R∗s) is a critical
point of fs for every s ∈ {1, 2, . . . , r}. �
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Theorem 2. Let fi for all i = 1, . . . ,m be a continuously q-differentiable on a set X ⊂ Rn, and {xk} be
the sequence by xk+1 = xk + αkdk

q(xk), and given that

1.

β2

m∑
i=1

λk
i (∇q fi(xk))T dq(xk) ≤

m∑
i=1

λk
i∇q fi(xk+1)dq(xk), where β1 < β2 < 1, (4.3)

2. ‖∇q fi(xk) − ∇q fi(xk+1)‖≤ Li‖xk − xk+1‖, ∀ xk, xk+1 ∈ Rn, i = 1, . . . ,m, and
3. ‖cos2 θk

i ‖ ≥ δ for some δ > 0, for all i = 1, . . . ,m, where θk
i is the angle between dq(xk) and

∇q fi(xk).

Then, every accumulation point of {xk} generated is a weak efficient solution of (UP).

Proof. We have proved that every accumulation point of {xk} is a critical point of fi, for all i = 1, . . . ,m.
Let x∗ be an accumulation point of {xk}. Fix one i0 from i = 1, . . . ,m for which ∇q fi0(x∗) = 0, then x∗

will be a (weak) efficient solution. Form Cauchy-Schwartz inequality for all i = 1 . . . ,m, we obtain

(∇q fi(xk+1) − ∇q fi(xk))T dq(xk) ≤ ‖∇q fi(xk+1) − ∇q fi(xk)‖‖dq(xk)‖
≤ Li‖xk+1 − xk‖‖dq(xk)‖
≤ Liαk‖dq(xk)‖2,

Since L = max Li, where i = 1, 2 . . . ,m, then

(∇q fi(xk+1) − ∇q fi(xk))T dq(xk) ≤ Lαk‖dq(xk)‖2.

We obtain

Lαk‖dq(xk)‖2 ≥ max
i=1,...m

(∇q fi(xk+1) − ∇q fi(xk))T dq(xk)

≥

m∑
i=1

λk
i (∇q fi(xk+1) − ∇q fi(xk))T dq(xk).

From part 1 of this theorem,

Lαk‖dq(xk)‖2 ≥ (β2 − 1)
m∑

i=1

λk
i∇q fi(xk)T dq(xk)

≥ (β2 − 1) max
i=1,...,m

∇q fi(xk)T dq(xk),

this is,

αk ≥
β2 − 1

L‖dq(xk)‖2
max

i=1,...,m
∇q fi(xk)T dq(xk).

Since maxi=1,...,m ∇q fi(xk)T dq(xk) < 0, then

αk

(
max

i=1,...,m
∇q fi(xk)T dq(xk)

)
≤

β2 − 1
L‖dq(xk)‖2

(
max

i=1,...,m
∇q fi(xk)T dq(xk)

)2

,
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that is,

−β1αk

(
max

i=1,...,m
∇q fi(xk)T dq(xk)

)
≥
β1(β2 − 1)
L‖dq(xk)‖2

min
i=1,...,m

(
∇q fi(xk)T dq(xk)

)2

.

Since (∇q fi(xk)T dq(xk))2 = (∇q fi(xk)T )2(dq(xk))2(cos2 θk
i ), for all i = 1, . . . ,m then

−β1αk

(
max

i=1,...,m
∇q fi(xk)T dq(xk)

)
≥
β1(1 − β2)

L
min

i=1,...,m
[‖∇q fi(xk)‖2 cos2(θi)T ],

where θk
i is the angle between ∇q fi(xk) and dq(xk). We have

∞ > fi1(x0) − fi1(xk+1) ≥ −β1

k∑
j=0

α j max
y∈Y,i=1,...,m

(∇q fi(xi))T dq(xi)

=

k∑
j=0

α j(−β1 max
y∈Y,i=1,...,m

(∇q fi(xi))T dq(xi)).

Taking k → ∞,

∞ > fi1(x0) − fi1(x∗) ≥
∞∑
j=0

α j(−β1 max
i=1,...,m

(∇q fi(xi))T dq(xi)).

Since −β1 maxi=1,...,m ∇q fi(xi)T dq(xi) > 0, then

αk(−β1 max
i=1,...,m

(∇q fi(xk))T dq(xk))→ 0 as k → ∞.

We also have

β1(1 − β2)
L

min
i=1,...,m

[‖∇q fi(xk)‖2 cos2 θk
i ]→ 0 as k → ∞.

Since cos2 θk
i > δ for i = 1, . . . ,m, then mini=1,...,m‖∇q fi(xk)‖2 → 0 as k → ∞. Fix any i0 from

i = 1, . . . ,m such that ‖∇q fi0(xk)‖2 → 0 as k → ∞. Since ‖∇q fi0(xk)| is a continuous function, and
‖∇q fi0(xk)‖ → 0 as k → ∞, then ∇q fi0(x∗) = 0 for every accumulation points x∗ of {xk}. Thus, x∗ is a
local weak efficient solution. �

Iteration Complexity of Algorithm 1: Based on the ideas above, we consider iteration complexity.
For a given iteration k, a point solution for a particular xk, reaches to an optimal point under a desired
tolerance ε. The steepest descent direction moves from dk

q to some dk+1
q where dk+1

q −dk
q is small enough

to be able to determine the associated solution on the Pareto front. For non-convex, Algorithm 1 has a
convergence rate of the order of 1

√
k
, and for the convex case, Algorithm 1 establishes the desired 1

k rate
for a certain sequence of weights {λ̄k} (see Theorem 4.1 of [29]) since for large value of k, q-gradient
behaves as a classical gradient [43]. The global rates translate into worst-case complexity bounds of
the order of 1

ε2 , 1
ε
, and log 1

ε
iterations, respectively, to reach an approximate optimality criterion of the

form ‖dk
q‖ ≤ ε for some ε ∈ (0, 1) where dk

q is the steepest descent direction (3.6). Due to the existence

AIMS Mathematics Volume 5, Issue 6, 5521–5540.



5531

of a uniform lower bound on the step-length αk in Algorithm 1 will always stop in a finite number of
steps.

It is important to note that (weak) efficient solution of (UP) is not unique. Therefore, one can
execute Algorithm 1 with any starting point to reach at one of these (weak) efficient points. User may
consider a sufficiently large compact subset of Rn as a domain of (UP) to solve. We have implemented
algorithm 1 with the Armijo-Wolfe line search with backtracking. We have considered both convex
and nonconvex problems. To avoid unbounded solutions of the subproblem at any iterating point xk,
we consider the following subproblem:

min
t,dq

t +
1
2

dT
q dq (4.4)

subject to ∇q fi(xk)T dq ≤ t i = 1, 2, ...,m,
lb ≤ xk + dq ≤ ub,

where lb and ub are lower and upper bound of xk, respectively. We now illustrate the methodology in
numerical examples.

Example 2 (One Dimension [55]). Consider the problem (UP): Minimizex∈R ( f1(x), f2(x)), where
f1(x) = x2 − 4 and f2(x) = (x − 1)2.

This problem has two objective functions and one decision variable. Both functions are convex.
The set of efficient solutions to this problem is [0, 1] which can be shown in Figure 1. Using Algorithm
1 with any starting point x0 > 1, one can find the efficient point approximately equal to 1. At starting
point x0 = 10, the approximate solution is obtained at 29th step as x29 = 1.00240356 ≈ 1 in [55].
Under the same starting point and stopping criterion, i.e, ε1 = 10−7, ε2 = 10−11, and δ = 10−4, our
algorithm provides the efficient solution at 2nd step. The Pareto front using Algorithm 1 and [28] for
−2 ≤ x ≤ 2 is found as a convex curve shown in Figure 2.

-3 -2 -1 0 1 2 3

5

10

15

20

f1
f2

Figure 1. Graph of Example 2.
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Figure 2. (a) Approximate Pareto Front without q-derivative for Example 2. (b) Approximate
Pareto Front with q-derivative for Example 2.

Example 3 (Two Dimension). Consider an unconstrained multiobjective optimization problem [55]
minimizex∈R2 ( f1(x), f2(x)), where f1(x1, x2) = 1

4

[
(x1−1)4 +2(x2−2)4], f2(x1, x2) = (x2− x2

1)2 + (1− x1)2,

After running the Algorithm 1, and methodology used in [28], we obtain the point x∗ = (1, 2)T and
λ∗1 = 0.9774, λ∗2 = 0.226, in two iterations as final solution with a starting point x0 = (1, 3)T . One can
verify that

λ∗1∇q f1(x∗) + λ∗2∇q f2(x∗) ≈
(
0
0

)
,

Note that function f2 is not convex. A multiobjective optimization does not produce a unique
solution but a set of efficient solutions. The algorithm does not depend upon the choice of the starting
point. The sequence converges to one of the sets of critical or weak efficient solutions, starting at
any starting point. For example, with starting point x0 = (0, 0)T , Algorithm 1 converges to x∗ =

(0.9975, 0.9936)T in 60 iterations, while methodology used in [28] converges to x∗ = (0.9981, 0.9950)
in 64 iterations.

Example 4 (Two Dimension Non-Convex Problem). Consider the test problem (DTLZP) from [56]:
min

0≤x1,x2≤1
( f1(x1, x2), f2(x1, x2)), where f1(x1, x2) = (1+gx) cos(0.5πx1), f2(x1, x2) = (1+gx) sin(0.5πx1),

gx = (x2 − 0.5)2.

Consider a starting point x0 = (0.5060, 0.6991)T . Then, we have f (x0) = (0.7282, 0.7420)T . Note
that both f1 and f2 are non-convex. At x0, the q-gradients are |∇q f1(x0)| = −2.7161 < 0 and |∇q f2(x0)| =
−2.8055 < 0, respectively. Solution of subproblem at x0 is t0 = −0.0793, and steepest descent direction
is d0

q = (0.0006,−0.2816)T . Because cos2(θ1) = 0.0552 > 10−4 and cos2(θ2) = 0.0571 > 10−4, thus step
length α0 = 1 is selected to satisfying both (3.14) and (3.15). Next iterating point is x1 = x0 + α0d0

q =

(0.5066, 0.4175). Clearly, we get f (x1) = (0.7044, 0.7193)T < f (x0). Final solution is obtained at 7th

step as x7 = (0.5068, 0.5010)T . One can verify that x7 is an approximate critical point since

‖0.4957∇q f1(x7) + 0.5053∇q f2(x7)‖ = 1.4 × 10−3 ≈ 0.
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Comparison of approximate Pareto front with weighted sum method: To obtain an approximate
Pareto front we have considered a multi-start technique. Here, 100 uniformly distributed random points
are selected to execute Algorithm 1 and weighted sum (WS) algorithm individually. Approximate
Pareto front obtained by Algorithm 1 is compared with the approximate Pareto front obtained by the
weighted sum method. In (WS) method we have used weights (1, 0), (0, 1), and 98 random weights.
The single objective optimization problem is solved by a single objective steepest descent method
with some random initial approximation. Approximate Pareto fronts generated by Algorithm 1 for
Example 2 and Example 4 are given in Figure 3(a), (b), respectively. One can observe that Algorithm
1 generates an approximate Pareto front for both problems but (WS) fails for Example 4 (non-convex
problem).
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Figure 3. (a) Approximate Pareto Front for Example 2. (b) Approximate Pareto front for
Example 4.

Table 1 lists the average of number of iterations it, that of function evaluations eval f , that of
gradient evaluations evalg and that of subproblem solved evalsp, respectively to show the
performance of q-steepest descent method for (UP). The reported data in Table 1 represent a typical
execution of algorithm 1. We conclude that Algorithm 1 performs better in terms of the number of
iterations than the method of [28]. It is noteworthy that the number of steepest descent direction
calculations is equal to the number of iterations.

Table 1. Performance of q-Steepest Descent Method.

Problem (q-SDUP) [28]
it eval f evalg evalsp it eval f evalg evalsp

Example 2 171 238 238 1623 176 250 176 1929

Example 4 684 777 775 4561 705 715 714 4903

Example 5 (Three Dimension). Consider multiobjective problem: Minimize ( f1(x), f2(x), f3(x)), where
f1(x1, x2, x3) = x2

1 + x2
2 + x2

3, f2(x1, x2, x3) = (x1 − 2)2 + x2
2 + x2

3, f3(x1, x2, x3) = x2
1 + x2

2 + (x3 − 2)2.
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We solve the above problem with the method described in [28] and compare it with the proposed
method of this paper. Consider a starting point x0 = (2, 1, 3)T , and stopping criteria
min{∇q f1,∇q f2,∇q f3} < 10−5. A program in MATLAB (2017a) is written in the lines of Algorithm 1.
Of course, the search process moves from global at the beginning to particularly neighborhood at last
due to the advantage of q-derivative shown in Table 2. The solution to this problem is found at 14th
iterations, and this point is a local weak efficient solution of the above problem.

Table 2. Computational Details of Example 5.
k xk αk dk

q xk+1 [λk+1
1 , λk+1

2 , λk+1
3 ] min cos(θi

k)

0

21
3

 0.5

−34.6980
−4.3275
−55.3018


1.6510
7.8363
0.3491

 [0.0000, 0.8250, 0.1750] 1.9734

1

1.6510
7.8363
0.3491

 0.5

 0.6983
−0.9999
−0.6971


 2.3493

6.8364
−0.3480

 [0.0000, 1.0000, 0.0000] 1.9738

2

 2.3493
6.8364
−0.3480

 0.5

−0.6987
−1.0000
0.6969


1.6506
5.8364
0.3489

 [0.0000 1.0000 0.0000] 1.9751

3

1.6506
5.8364
0.3489

 0.5

 0.6990
−1.0000
−0.6975


 2.3496

4.8364
−0.3486

 [0.0000 1.0000 0.0000] 1.9758

4

 2.3496
4.8364
−0.3486

 0.5

−0.6989
−1.0000
0.6981


1.6507
3.8364
0.3495

 [0.0000 1.0000 0.0000] 1.9769

5

1.6507
3.8364
0.3495

 0.5

 0.6990
−0.9999
−0.6990


 2.3496

2.8365
−0.3495

 [0.0000 1.0000 0.0000] 1.9774

6

 2.3496
2.8365
−0.3495

 0.5

−0.6993
−1.0000
0.6989


1.6503
1.8365
0.3493

 [0.0000 1.0000 0.0000] 1.7603

7

1.6503
1.8365
0.3493

 0.5

 0.4009
−1.1996
−0.4007


1.8507
1.2367
0.1490

 [0 0.9254 0.0746] 1.1536

8

1.8507
1.2367
0.1490

 0.5

 0.1917
−1.0393
−0.1915


1.9466
0.7170
0.0533

 [0 0.9733 0.0267] 1.0172

9

1.9466
0.7170
0.0533

 0.5

 0.0546
−1.0056
−0.0539


 2.0012
−0.2886
−0.0007

 [0 0.9869 0.0131] 0.8673

10

 2.0012
−0.2886
−0.0007

 0.5

−0.3413
−0.8665
0.0010


 1.8305
−0.7219
−0.0002

 [0.0843 0.9153 0.0004] 0.579

11

 1.8305
−0.7219
−0.0002

 0.5

−0.3678
−0.5775

0


 1.6542
−1.0106
−0.0002

 [0.0865 0.8271 0.0865] 0.1452

12

 1.6542
−1.0106
−0.0002

 0.5

−0.2297
−0.3041

0


 1.4245
−1.3147
−0.0002

 [0 0.7697 0.2303] 0.0011

13

 1.4245
−1.3147
−0.0002

 0.5

0.0221
0.0243

0


 1.4466
−1.2904
−0.0002

 [0.1411 0.7178 0.1411] 4.5278e-05

14

 1.4466
−1.2904
−0.0002

 0.5

−0.0045
−0.0050

0


 1.4421
−1.2954
−0.0002

 [0.2779 0.7221 0] 1.5914e-06

15

 1.4421
−1.2954
−0.0002

 0.5

0.8427 × 10−3

0.9387 × 10−3

0


 1.4421
−1.2954
−0.0002

 [0.2788 0.7212 0.0000] 0.0013
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Example 6 (Two Dimension Problem). Consider multimodal multiobjective optimization
problem [57]: minimize

−5≤x1,x2≤5
( f1(x1, x2), f2(x1, x2)), where f1(x1, x2) = 100(x2

1 − x2)2 + (x1 − 1)2,

f2(x1, x2) = 100(x2
1 − x2)2 + (x1 − 2)2.

Functions f1 and f2 have global minimizers at x∗ = (1, 1)T and x̂ = (2, 4)T , respectively. It is
noteworthy the f1(x∗) = 0 = f2(x̂) = 0 and f1(x̂) = f2(x∗) = 1. We execute the Algorithm 1 100 times
using starting points from a uniform random distribution belonging to ]−5, 5[×]−5, 5[. In all instances,
Algorithm 1 stopped at a point satisfying the convergence criterion. We see that Algorithm 1 could
estimate the Pareto front as shown in Figure 4.
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Figure 4. Approximate Pareto Front for Example 6.

5. Comparison with the existing method

We select the work of [28] to compare the proposed method. The basic difference between the
method of [28] and our method is that q-gradient based steepest descent algorithm gives faster
convergence for q ∈ (0, 1). The q-drivative evaluates tangent, computes the secant of the objective
functions, and therefore takes larger steps towards the optimum solution. Table 3 summarizes the
results after executing the method of [28] and the proposed algorithm of this paper, with several
starting points for the problem of Example 5. Both methods are solved using the MATLAB (2017a)
program. It is seen that number of iterations using Algorithm 1 is less than a number of iterations in
the methodology by [28].
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Table 3. Comparison Results with [28] for Example 5.
Sl.
No.

Starting
Point

Number of iterations
in Algorithm 1

Final result in
Algorithm 1

Number of
iterations in [28]

Final result
in [28]

1

15
6

 10

 1.4434
−1.2907
0.0035

 15

 1.3652
−1.0703
−0.0000


2

34
1

 10

 1.4117
−1.2015
0.0003

 14

 1.4472
−1.3035
−0.0000


3

57
3

 13

 1.4048
−1.1773
0.0001

 18

 1.3975
−1.1569
−0.0000


4

10
8
9

 13

 1.4559
−1.3422
−0.0011

 16

 1.2051
−0.7542
−0.0000


5

73
8

 9

 1.3421
−1.0236
0.3291

 13

 1.2603
−0.8490
0.3862


6

 2
10
7

 17

 1.3766
−1.1076
0.1774

 20

 1.3556
−1.0486
0.1748


7

57
6

 15

 1.3805
−1.1174
0.1072

 17

 1.3793
−1.1073
0.1094


8

−9
−5
−1

 8

 1.2285
−0.7931
0.0020

 8

 1.2274
−0.7917
−0.0000


9

39
5

 17

 1.4242
−1.2351
0.0938

 19

 1.3861
−1.1252
0.0935


6. Conclusions

We have applied the gradient descent approach to solve (UP), and gave necessary optimality
condition based on q-derivative. We proved the convergence based on the proposed algorithm. The
steepest descent method for multiobjective optimization with q-derivative converges independently of
the starting point to a critical Pareto point. The solution strategy does not require any ordering
information. The proposed algorithm has been compared with the existing method to measure the
efficiency of algorithm.
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