AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Bounds of a unified integral operator for (s,m)-convex functions and their consequences

1 School of business administration, University of science and technology Liaoning, Anshan 114051, China
2 Department of mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
3 Department of Basic Science and Humanities, University of Engineering and Technology, Lahore (Narowal Campus), Pakistan

The unified integral operator presented in Definition 4 produces several kinds of known fractional and conformable integral operators. The goal of this paper is to obtain bounds of this unified integral operator by using the definition of (s,m)-convexity. The resulting inequalities in specific cases represent the bounds of many known fractional and conformable fractional integral operators in a compact form.
  Article Metrics


1. A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, New York-London, 2006.

2. Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953.    

3. S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Inform. Math. Sci., 6 (2014), 93-107.

4. M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395.    

5. S. G. Farid, A unified integral operator and its consequences, Open J. Math. Anal., 4 (2020), 1-7.    

6. H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.    

7. S. S. Dragomir, Inequalities of Jensens type for generalized k-g-fractional integrals of functions for which the composite fg-1 is convex, Fract. Differ. Calc., 1 (2018), 127-150.

8. S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized kfractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53-65.

9. F. Jarad, E. Ugurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247.

10. T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389.    

11. S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math., 7 (2012), 89-94.

12. T. R. Parbhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.

13. G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253.    

14. T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Fract. Calc. Appl., 3 (2012), 1-13.    

15. M. Z. Sarikaya, M. Dahmani, M. E. Kiris, et al. (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.

16. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.

17. T. Tunc, H. Budak, F. Usta, et al. On new generalized fractional integral operators and related fractional inequalities, ResearchGate, 2017. Available from:

18. Y. C. Kwun, G. Farid, S. Ullah, et al. Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283-126292.    

19. N. Eftekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Inequal., 8 (2014), 489-495.

20. Y. C. Kwun, G. Farid, S. M. Kang, et al. Derivation of bounds of several kinds ofoperators via (s, m)-convexity, Adv. Differ. Equ., 2020 (2020), 1-14.    

21. G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.

22. L. Chen, G. Farid, S. I. Butt, et al. Boundedness of fractional integral operators containing MittagLeffler functions, Turkish J. Inequal., 4 (2020), 14-24.

23. G. Farid, Estimation of Riemann-Liouville k-fractional integrals via convex functions, Acta et Commentat. Univ. Tartuensis de Math., 23 (2019), 71-78.

24. G. Farid, Some Riemann-Liouville fractional integral for inequalities for convex functions, J. Anal., 27 (2019), 1095-1102.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved