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1. Introduction

First we give the definitions of generalized fractional integral operators which are special cases of
the unified integral operators defined in (1.9), (1.10).

Definition 1.1. [1] Let f : [a, b] → R be an integrable function. Also let g be an increasing and
positive function on (a, b], having a continuous derivative g′ on (a, b). The left-sided and right-sided
fractional integrals of a function f with respect to another function g on [a, b] of order µ where<(µ) >
0 are defined by:

µ
gIa+ f (x) =

1
Γ(µ)

∫ x

a
(g(x) − g(t))µ−1g′(t) f (t)dt, x > a, (1.1)

µ
gIb− f (x) =

1
Γ(µ)

∫ b

x
(g(t) − g(x))µ−1g′(t) f (t)dt, x < b, (1.2)
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where Γ(.) is the gamma function.

Definition 1.2. [2] Let f : [a, b] → R be an integrable function. Also let g be an increasing and
positive function on (a, b], having a continuous derivative g′ on (a, b). The left-sided and right-sided
fractional integrals of a function f with respect to another function g on [a, b] of order µ where
<(µ), k > 0 are defined by:

µ
gIk

a+ f (x) =
1

kΓk(µ)

∫ x

a
(g(x) − g(t))

µ
k−1g′(t) f (t)dt, x > a, (1.3)

µ
gIk

b− f (x) =
1

kΓk(µ)

∫ b

x
(g(t) − g(x))

µ
k−1g′(t) f (t)dt, x < b, (1.4)

where Γk(.) is defined as follows [3]:

Γk(x) =

∫ ∞

0
tx−1e−

tk
k dt,<(x) > 0. (1.5)

A fractional integral operator containing an extended generalized Mittag-Leffler function in its
kernel is defined as follows:

Definition 1.3. [4] Let ω, µ, α, l, γ, c ∈ C,<(µ),<(α),<(l) > 0,<(c) > <(γ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ+<(µ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional integral operators
ε
γ,δ,k,c
µ,α,l,ω,a+ f and εγ,δ,k,cµ,α,l,ω,b− f are defined by:(

ε
γ,δ,k,c
µ,α,l,ω,a+ f

)
(x; p) =

∫ x

a
(x − t)α−1Eγ,δ,k,c

µ,α,l (ω(x − t)µ; p) f (t)dt, (1.6)

(
ε
γ,δ,k,c
µ,α,l,ω,b− f

)
(x; p) =

∫ b

x
(t − x)α−1Eγ,δ,k,c

µ,α,l (ω(t − x)µ; p) f (t)dt, (1.7)

where

Eγ,δ,k,c
µ,α,l (t; p) =

∞∑
n=0

βp(γ + nk, c − γ)
β(γ, c − γ)

(c)nk

Γ(µn + α)
tn

(l)nδ
(1.8)

is the extended generalized Mittag-Leffler function and (c)nk is the Pochhammer symbol defined by
(c)nk =

Γ(c+nk)
Γ(c) .

Recently, a unified integral operator is defined as follows:

Definition 1.4. [5] Let f , g : [a, b] −→ R, 0 < a < b, be the functions such that f be positive and
f ∈ L1[a, b], and g be differentiable and strictly increasing. Also let φ

x be an increasing function on
[a,∞) and α, l, γ, c ∈ C, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ [a, b] the left and right integral
operators are defined by

(gFφ,γ,δ,k,c
µ,α,l,a+ f )(x, ω; p) =

∫ x

a
Ky

x(Eγ,δ,k,c
µ,α,l , g; φ) f (y)d(g(y)), (1.9)

(gFφ,γ,δ,k,c
µ,β,l,b− f )(x, ω; p) =

∫ b

x
Kx

y (Eγ,δ,k,c
µ,β,l , g; φ) f (y)d(g(y)), (1.10)

where the involved kernel is defined by

Ky
x(Eγ,δ,k,c

µ,α,l , g; φ) =
φ(g(x) − g(y))

g(x) − g(y)
Eγ,δ,k,c
µ,α,l (ω(g(x) − g(y))µ; p). (1.11)
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For suitable settings of functions φ, g and certain values of parameters included in Mittag-Leffler
function, several recently defined known fractional and conformable fractional integrals studied in
[1, 6–17] can be reproduced, see [18, Remarks 6&7].

The aim of this study is to derive the bounds of all aforementioned integral operators in a unified
form for (s,m)-convex functions. These bounds will hold particularly for m-convex, s-convex and
convex functions and for almost all fractional and conformable integrals defined in [1, 6–17].

Definition 1.5. [19] A function f : [0, b]→ R, b > 0 is said to be (s,m)-convex, where (s,m) ∈ [0, 1]2

if
f (tx + m(1 − t)y) ≤ ts f (x) + m(1 − t)s f (y) (1.12)

holds for all x, y ∈ [0, b] and t ∈ [0, 1].

Remark 1. 1. If we take (s,m)=(1,m), then (1.12) gives the definition of m-convex function.
2. If we take (s,m)=(1, 1), then (1.12) gives the definition of convex function.
3. If we take (s,m)=(1, 0), then (1.12) gives the definition of star-shaped function.

2. Properties of the kernel Ky
x(Eγ,δ,k,c

µ,α,l , g; φ)

P1: Let g and φ

x be increasing functions. Then for x < t < y, x, y ∈ [a, b] the kernel Ky
x(Eγ,δ,k,c

µ,α,l , g; φ)
satisfies the following inequality:

Kx
t (Eγ,δ,k,c

µ,α,l , g; φ)g′(t) ≤ Kx
y (Eγ,δ,k,c

µ,α,l , g; φ)g′(t). (2.1)

This can be obtained from the following two straightforward inequalities:

φ(g(t) − g(x))
g(t) − g(x)

g′(t) ≤
φ(g(y) − g(x))

g(y) − g(x)
g′(t), (2.2)

Eγ,δ,k,c
µ,α,l (ω(g(t) − g(x))µ; p) ≤ Eγ,δ,k,c

µ,α,l (ω(g(y) − g(x))µ; p). (2.3)

The reverse of inequality (2.1) holds when g and φ

x are decreasing.
P2: Let g and φ

x be increasing functions. If φ(0) = φ′(0) = 0, then for x, y ∈ [a, b], x < y,
Kx

y (Eγ,δ,k,c
µ,α,l , g; φ) ≥ 0.

P3: For p, q ∈ R,
Kx

y (Eγ,δ,k,c
µ,α,l , g; pφ1 + qφ2) = pKx

y (Eγ,δ,k,c
µ,α,l , g; φ1) + qKx

y (Eγ,δ,k,c
µ,α,l , g; φ2).

The upcoming section contains the results which deal with the bounds of several integral operators
in a compact form by utilizing (s,m)-convex functions. A version of the Hadamard inequality in a
compact form is presented, also a modulus inequality is given for differentiable function f such that
| f ′| is (s,m)-convex function.

3. Main results

In this section first we will state the main results. The following result provides upper bound of
unified integral operators.
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Theorem 3.1. Let f : [a, b] −→ R, 0 ≤ a < b be a positive integrable (s,m)-convex function, m ∈
(0, 1]. Let g : [a, b] −→ R be differentiable and strictly increasing function, also let φ

x be an increasing
function on [a, b]. If α, β, l, γ, c ∈ C, p, µ ≥ 0, δ ≥ 0 and 0 < k ≤ δ + µ, then for x ∈ (a, b) the following
inequality holds for unified integral operators:(

gFφ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p) +

(
gFφ,γ,δ,k,c

µ,β,l,b− f
)

(x, ω; p) (3.1)

≤ Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)
(
m f

( x
m

)
g(x) − f (a)g(a) −

Γ(s + 1)
(x − a)s

(
m f

( x
m

)
sIx−g(a) − f (a) sIa+g(x)

))
+ Kx

b(Eγ,δ,k,c
µ,β,l , g; φ)

(
f (b)g(b) − m f

( x
m

)
g(x) −

Γ(s + 1)
(b − x)s

(
f (b) sIb−g(x) − m f

( x
m

)
sIx+g(b)

))
.

Lemma 3.2. [20] Let f : [0,∞] −→ R, be an (s,m)-convex function, m ∈ (0, 1]. If f (x) = f ( a+b−x
m ),

then the following inequality holds:

f
(
a + b

2

)
≤

1
2s (1 + m) f (x) x ∈ [a, b]. (3.2)

The following result provides generalized Hadamard inequality for (s,m)-convex functions.

Theorem 3.3. Under the assumptions of Theorem 3.1, in addition if f (x) = f
(
a + b − x

m

)
, m ∈ (0, 1],

then the following inequality holds:

2s

(1 + m)
f
(
a + b

2

) ((
gFφ,γ,δ,k,c

µ,α,l,b− 1
)

(a, ω; p) +
(

gFφ,γ,δ,k,c
µ,β,l,a+ 1

)
(b, ω; p)

)
(3.3)

≤
(

gFφ,γ,δ,k,c
µ,α,l,b− f

)
(a, ω; p) +

(
gFφ,γ,δ,k,c

µ,β,l,a+ f
)

(b, ω; p)

≤
(
Ka

b(Eγ,δ,k,c
µ,α,l , g; φ) + Ka

b(Eγ,δ,k,c
µ,α,l , g; φ)

) (
f (b)g(b) − m f

( a
m

)
g(a)

−
Γ(s + 1)
(b − a)s

(
f (b) sIb−g(a) − m f

( a
m

)
sIa+g(b)

))
.

Theorem 3.4. Let f : [a, b] −→ R, 0 ≤ a < b be a differentiable function. If | f ′| is (s,m)-convex,
m ∈ (0, 1] and g : [a, b] −→ R be differentiable and strictly increasing function, also let φ

x be an
increasing function on [a, b]. If α, β, l, γ, c ∈ C, p, µ ≥ 0, δ ≥ 0 and 0 < k ≤ δ + µ, then for x ∈ (a, b)
we have∣∣∣∣(gFφ,γ,δ,k,c

µ,α,l,a+ f ∗ g
)

(x, ω; p) +
(

gFφ,γ,δ,k,c
µ,β,l,b− f ∗ g

)
(x, ω; p)

∣∣∣∣ (3.4)

≤ Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)
(
m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ g(x) − | f ′(a)|g(a) −
Γ(s + 1)
(x − a)s

(
m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ sIx−g(a) − | f ′(a)| sIa+g(x)
))

+ Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)
(
| f ′(b)|g(b) − m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ g(x) −
Γ(s + 1)
(b − x)s

(
| f ′(b)| sIb−g(x) − m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ sIx+g(b)
))
,

where (
gFφ,γ,δ,k,c

µ,α,l,a+ f ∗ g
)

(x, ω; p) :=
∫ x

a
Kt

x(E
γ,δ,k,c
µ,α,l , g; φ) f ′(t)d(g(t)),

(
gFφ,γ,δ,k,c

µ,β,l,b− f ∗ g
)

(x, ω; p) :=
∫ b

x
Kx

t (Eγ,δ,k,c
µ,α,l , g; φ) f ′(t)d(g(t)).

AIMS Mathematics Volume 5, Issue 6, 5510–5520.



5514

4. Proofs of main results

In this section we give the proves of the results stated in aforementioned section.
Proof of Theorem 3.1. By (P1), the following inequalities hold:

Kt
x(E

γ,δ,k,c
µ,α,l , g; φ)g′(t) ≤ Ka

x (Eγ,δ,k,c
µ,α,l , g; φ)g′(t), a < t < x, (4.1)

Kx
t (Eγ,δ,k,c

µ,α,l , g; φ)g′(t) ≤ Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)g′(t), x < t < b. (4.2)

For (s,m)-convex function the following inequalities hold:

f (t) ≤
( x − t

x − a

)s

f (a) + m
( t − a

x − a

)s

f
( x
m

)
, a < t < x, (4.3)

f (t) ≤
( t − x
b − x

)s

f (b) + m
( b − t
b − x

)s

f
( x
m

)
, x < t < b. (4.4)

From (4.1) and (4.3), the following integral inequality holds true:∫ x

a
Kt

x(E
γ,δ,k,c
µ,α,l , g; φ) f (t)d(g(t)) ≤ f (a)Ka

x (Eγ,δ,k,c
µ,α,l , g; φ) (4.5)

×

∫ x

a

( x − t
x − a

)s
d(g(t)) + m f

( x
m

)
Ka

x (Eγ,δ,k,c
µ,α,l , g; φ)

∫ x

a

( t − a
x − a

)s
d(g(t)).

Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional
integrals in the right hand side, provides the upper bound of unified left sided integral operator (1.1) as
follows: (

gFφ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p) ≤ Ka

x (Eγ,δ,k,c
µ,α,l , g; φ)

(
m f

( x
m

)
g(x) − f (a)g(a) (4.6)

−
Γ(s + 1)
(x − a)s

(
m f

( x
m

)
sIx−g(a) − f (a) sIa+g(x)

))
.

On the other hand from (4.2) and (4.4), the following integral inequality holds true:∫ b

x
Kx

t (Eγ,δ,k,c
µ,α,l , g; φ) f (t)d(g(t)) ≤ f (b)Kx

b(Eγ,δ,k,c
µ,β,l , g; φ) (4.7)

×

∫ b

x

( t − x
b − x

)s
d(g(t)) + m f

( x
m

)
Kb

x (Eγ,δ,k,c
µ,α,l , g; φ)

∫ b

x

(
b − t
b − x

)s

d(g(t)).

Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional
integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.2)
as follows: (

gFφ,γ,δ,k,c
µ,β,l,b− f

)
(x, ω; p) ≤ Kx

b(Eγ,δ,k,c
µ,β,l , g; φ)

(
f (b)g(b) − m f

( x
m

)
g(x) (4.8)

−
Γ(s + 1)
(b − x)s

(
f (b) sIb−g(x) − m f

( x
m

)
sIx+g(b)

))
.

By adding (4.6) and (4.8), (3.1) can be obtained.
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Remark 2. (i) If we consider (s,m)= (1,1) in (3.1), [18, Theorem 1] is obtained.
(ii) If we consider p = ω = 0 in (3.1), [20, Theorem 1] is obtained.
(iii) If we consider φ(t) = Γ(α)tα, p = ω = 0 and (s,m)= (1,1) in (3.1), [21, Theorem 1] is obtained.
(iv) If we consider α = β in the result of (iii), then [21, Corollary 1] is obtained.
(v) If we consider φ(t) = tα, g(x) = x and m = 1 in (3.1), then [22, Theorem 2.1] is obtained.
(vi) If we consider α = β in the result of (v), then [22, Corollary 2.1] is obtained.

(vii) If we consider φ(t) =
Γ(α)t

α
k

kΓk(α) , (s,m)= (1,1), g(x) = x and p = ω = 0 in (3.1), then [23, Theorem 1]
can be obtained.
(viii) If we consider α = β in the result of (vii), then [23, Corollary 1] can be obtained.
(ix) If we consider φ(t) = Γ(α)tα, g(x) = x and p = ω = 0 and (s,m)= (1,1) in (3.1), then [24,
Theorem 1] is obtained.
(x) If we consider α = β in the result of (ix), then [24, Corollary 1] can be obtained.
(xi) If we consider α = β = 1 and x = a or x = b in the result of (x), then [24, Corollary 2] can be
obtained.
(xii) If we consider α = β = 1 and x =

a + b
2

in the result of (x), then [24, Corollary 3] can be obtained.

�
Proof of Theorem 3.3. By (P1), the following inequalities hold:

Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)g′(x) ≤ Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)g′(x), a < x < b, (4.9)

Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)g′(x) ≤ Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)g′(x) a < x < b. (4.10)

For (s,m)-convex function f , the following inequality holds:

f (x) ≤
( x − a
b − a

)s

f (b) + m
(b − x
b − a

)s

f
( a
m

)
, a < x < b. (4.11)

From (4.9) and (4.11), the following integral inequality holds true:∫ b

a
Ka

x (Eγ,δ,k,c
µ,α,l , g; φ) f (x)d(g(x))

≤ m f
( a
m

)
Ka

b(Eγ,δ,k,c
µ,α,l , g; φ)

∫ b

a

(
b − x
b − a

)s

d(g(x)) + f (b)Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)
∫ b

a

( x − a
b − a

)s
d(g(x)).

Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional
integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.1)
as follows:

(
gFφ,γ,δ,k,c

µ,α,l,b− f
)

(a, ω; p) ≤ Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)
(

f (b)g(b) − m f
( a
m

)
g(a) (4.12)

−
Γ(s + 1)
(b − a)s

(
f (b) sIb−g(a) − m f

( a
m

)
sIa+g(b)

))
.

On the other hand from (4.9) and (4.11), the following inequality holds which involves Riemann-
Liouville fractional integrals on the right hand side and estimates of the integral operator (1.2):
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(
gFφ,γ,δ,k,c

µ,β,l,a+ f
)

(b, ω; p) ≤ Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)
(

f (b)g(b) − m f
( a
m

)
g(a) (4.13)

−
Γ(s + 1)
(b − a)s

(
f (b) sIb−g(a) − m f

( a
m

)
sIa+g(b)

))
.

By adding (4.12) and (4.13), following inequality can be obtained:(
gFφ,γ,δ,k,c

µ,α,l,b− f
)

(a, ω; p) +
(

gFφ,γ,δ,k,c
µ,β,l,a+ f

)
(b, ω; p) (4.14)

≤
(
Ka

b(Eγ,δ,k,c
µ,α,l , g; φ) + Ka

b(Eγ,δ,k,c
µ,α,l , g; φ)

) (
f (b)g(b) − m f

( a
m

)
g(a)

−
Γ(α + 1)
(b − a)s

(
f (b) sIb−g(b) − m f

( a
m

)
sIa+g(b)

))
.

Multiplying both sides of (3.2) by Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)g′(x), and integrating over [a, b] we have

f
(
a + b

2

) ∫ b

a
Ka

x (Eγ,δ,k,c
µ,α,l , g; φ)d(g(x)) ≤

(
1
2s

)
(1 + m)

∫ b

a
Ka

b(Eγ,δ,k,c
µ,α,l , g; φ) f (x)d(g(x)).

From Definition 1.4, the following inequality is obtained:

f
(
a + b

2

)
2s

(1 + m)

(
gFφ,γ,δ,k,c

µ,α,l,b− 1
)

(a, ω; p) ≤
(

gFφ,γ,δ,k,c
µ,α,l,b− f

)
(a, ω; p). (4.15)

Similarly multiplying both sides of (3.2) by Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)g′(x), and integrating over [a, b] we have

f
(
a + b

2

)
2s

(1 + m)

(
gFφ,γ,δ,k,c

µ,β,l,a+ 1
)

(b, ω; p) ≤
(

gFφ,γ,δ,k,c
µ,β,l,a+ f

)
(b, ω; p). (4.16)

By adding (4.15) and (4.16) the following inequality is obtained:

f
(
a + b

2

)
2s

(1 + m)

((
gFφ,γ,δ,k,c

µ,β,l,a+ 1
)

(b, ω; p) +
(

gFφ,γ,δ,k,c
µ,α,l,b− 1

)
(a, ω; p)

)
(4.17)

≤
(

gFφ,γ,δ,k,c
µ,β,l,a+ f

)
(b, ω; p) +

(
gFφ,γ,δ,k,c

µ,α,l,b− f
)

(a, ω; p).

Using (4.14) and (4.17), inequality (3.3) can be obtained, this completes the proof.

Remark 3. (i) If we consider (s,m)= (1,1) in (3.3), [18, Theorem 2] is obtained.
(ii) If we consider p = ω = 0 in (3.3), [20, Theorem 3] is obtained.
(iii) If we consider φ(t) = Γ(α)tα+1, p = ω = 0 and (s,m)= (1,1) in (3.3), [21, Theorem 3] is obtained.
(iv) If we consider α = β in the result of (iii), then [21, Corollary 3] is obtained.
(v) If we consider φ(t) = tα+1, g(x) = x and m = 1 in (3.3), then [22, Theorem 2.4] is obtained.
(vi) If we consider α = β in the result of (v), then [22, Corollary 2.6] is obtained.
(vii) If we consider φ(t) = Γ(α)t

α
k +1, (s,m)= (1,1), g(x) = x and p = ω = 0 in (3.3), then [23,

Theorem 3] can be obtained.
(viii) If we consider α = β in the result of (vii), then [23, Corollary 6] can be obtained.
(ix) If we consider φ(t) = Γ(α)tα+1, p = ω = 0, (s,m) = 1 and g(x) = x in (3.3), [24, Theorem 3] can
be obtained.
(x) If we consider α = β in the result of (ix), [24, Corrolary 6] can be obtained.
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�
Proof of Theorem 3.4. For (s,m)-convex function the following inequalities hold:

| f ′(t)| ≤
( x − t

x − a

)s

| f ′(a)| + m
( t − a

x − a

)s ∣∣∣∣∣ f ′( x
m

)∣∣∣∣∣ , a < t < x, (4.18)

| f ′(t)| ≤
( t − x
b − x

)s

| f ′(b)| + m
( b − t
b − x

)s ∣∣∣∣∣ f ′( x
m

)∣∣∣∣∣ , x < t < b. (4.19)

From (4.1) and (4.18), the following inequality is obtained:

∣∣∣∣(gFφ,γ,δ,k,c
µ,α,l,a+ ( f ∗ g)

)
(x, ω; p)

∣∣∣∣ ≤ Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)

(x − a)s (4.20)

×

(
(x − a)s

(
m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ g(x) − | f ′(a)|g(a)
)
− Γ(s + 1)

(
m

∣∣∣∣∣ f ′ ( x
m

)∣∣∣∣∣ sIx−g(a) − | f ′(a)| sIa+g(x)
))
.

Similarly, from (4.2) and (4.19), the following inequality is obtained:

∣∣∣∣(gFφ,γ,δ,k,c
µ,β,l,b− ( f ∗ g)

)
(x, ω; p)

∣∣∣∣ ≤ Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)

(b − x)s (4.21)

×

(
(b − x)s

(
| f ′(b)|g(b) − m f ′

∣∣∣∣∣( x
m

)∣∣∣∣∣ g(x)
)
− Γ(s + 1)

(
| f ′(b)| sIb−g(x) − m f ′

∣∣∣∣∣( x
m

)∣∣∣∣∣ sIx+g(b)
))
.

By adding (4.20) and (4.21), inequality (3.4) can be achieved.

Remark 4. (i) If we consider (s,m)= (1,1) in (3.4), then [18, Theorem 3] is obtained.
(ii) If we consider p = ω = 0 in (3.4), then [20, Theorem 2] is obtained.
(iii) If we consider φ(t) = Γ(α)tα+1, p = ω = 0 and (s,m)= (1,1) in (3.4), then [21, Theorem 2] is
obtained.
(iv) If we consider α = β in the result of (iii), then [21, Corollary 2] is obtained.
(v) If we consider φ(t) = tα, g(x) = x and m = 1 in (3.4), then [22, Theorem 2.3] is obtained.
(vi) If we consider α = β in the result of (v), then [22, Corollary 2.5] is obtained.
(vii) If we consider φ(t) = Γ(α)t

α
k +1, (s,m)= (1,1), g(x) = x and p = ω = 0 in (3.4), then [23,

Theorem 2] can be obtained.
(viii) If we consider α = β in the result of (vii), then [23, Corollary 4] can be obtained.

(ix) If we consider α = β = k = 1 and x =
a + b

2
, in the result of (viii), then [23, Corollary 5] can be

obtained.
(x) If we consider φ(t) = Γ(α)tα+1, g(x) = x and p = ω = 0 and (s,m)= (1,1) in (3.4), then [24,
Theorem 2] is obtained.
(xi) If we consider α = β in the result of (x), then [24, Corollary 5] can be obtained.

5. Boundedness and continuity

In this section, we have established boundedness and continuity of unified integral operators for
m-convex and convex functions.
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Theorem 5.1. Under the assumptions of Theorem 1, the following inequality holds for m-convex
functions:(

gFφ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p) +

(
gFφ,γ,δ,k,c

µ,β,l,b− f
)

(x, ω; p) (5.1)

≤ Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)(g(x) − g(a))
(
m f

( x
m

)
+ f (a)

)
+ Kx

b(Eγ,δ,k,c
µ,β,l , g; φ)(g(b) − g(x))

(
m f

( x
m

)
+ f (b)

)
.

Proof. If we put s = 1 in (4.5), we have∫ x

a
Kt

x(E
γ,δ,k,c
µ,α,l , g; φ) f (t)d(g(t)) ≤ f (a)Ka

x (Eγ,δ,k,c
µ,α,l , g; φ) (5.2)

×

∫ x

a

( x − t
x − a

)
d(g(t)) + m f

( x
m

)
Ka

x (Eγ,δ,k,c
µ,α,l , g; φ)

∫ x

a

( t − a
x − a

)
d(g(t)).

Further from simplification of (5.2), the following inequality holds:(
gFφ,γ,δ,k,c

µ,α,l,a+ f
)

(x, ω; p) ≤ Ka
x (Eγ,δ,k,c

µ,α,l , g; φ)(g(x) − g(a))
(
m f

( x
m

)
+ f (a)

)
. (5.3)

Similarly from (4.8), the following inequality holds:(
gFφ,γ,δ,k,c

µ,β,l,b− f
)

(x, ω; p) ≤ Kx
b(Eγ,δ,k,c

µ,β,l , g; φ)(g(b) − g(x))
(
m f

( x
m

)
+ f (b)

)
. (5.4)

From (5.3) and (5.4), (5.1) can be obtained. �

Theorem 5.2. With assumptions of Theorem 4, if f ∈ L∞[a, b], then unified integral operators for
m-convex functions are bounded and continuous.

Proof. From (5.3) we have∣∣∣∣(gFφ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p)

∣∣∣∣ ≤ Ka
b(Eγ,δ,k,c

µ,α,l , g; φ)(g(b) − g(a))(m + 1)‖ f ‖∞,

which further gives ∣∣∣∣(gFφ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p)

∣∣∣∣ ≤ K‖ f ‖∞,

where K = (g(b) − g(a))(m + 1)Ka
b(Eγ,δ,k,c

µ,α,l , g; φ).
Similarly, from (5.4) the following inequality holds:∣∣∣∣(gFφ,γ,δ,k,c

µ,β,l,b− f
)

(x, ω; p)
∣∣∣∣ ≤ K‖ f ‖∞.

Hence the boundedness is followed, further from linearity the continuity of (1.9) and (1.10) is
obtained. �

Corollary 1. If we take m = 1 in Theorem 5, then unified integral operators for convex functions are
bounded and continuous and following inequalities hold:∣∣∣∣(gFφ,γ,δ,k,c

µ,α,l,a+ f
)

(x, ω; p)
∣∣∣∣ ≤ K‖ f ‖∞,∣∣∣∣(gFφ,γ,δ,k,c

µ,β,l,b− f
)

(x, ω; p)
∣∣∣∣ ≤ K‖ f ‖∞,

where K = 2(g(b) − g(a))Ka
b(Eγ,δ,k,c

µ,α,l , g; φ).
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6. Conclusions

This paper has explored bounds of a unified integral operator for (s,m)-convex functions. These
bounds are obtained in a compact form which have further interesting consequences with respect to
fractional and conformable integrals for convex, m-convex and s-convex functions. Furthermore by
applying Theorems 3.1, 3.3 and 3.4 several associated results can be derived for different kinds of
fractional integral operators of convex, m-convex and s-convex functions.
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