
AIMS Mathematics, 2020, 5(5): 45814595. doi: 10.3934/math.2020294
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The nonlinearity and Hamming weights of rotation symmetric Boolean functions of small degree
Mathematical College, Sichuan University, Chengdu 610064, P. R. China
Received: , Accepted: , Published:
References
1. F. N. Castro, R. Chapman, L. A. Medina, et al. Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, Discrete Math. 341 (2018), 19151931.
2. F. N. Castro, L. A. Medina and P. Stănică, Generalized Walsh transforms of symmetric and rotation symmetric Boolean functions are linear recurrent, Appl. Algebra Eng. Comm., 29 (2018), 433453.
3. L. C. Ciungu, Cryptographic Boolean functions: ThusMorse sequences, weight and nonlinearity, Ph.D. Thesis, The State University of New York Buffalo, 2010.
4. E. Filiol and C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation immunity. In: International Conference on the Theory and Applications of Cryptographic Techniques, 1403 (1998), 475488, Springer, Berlin.
5. S. Kavut, S. Maitra and M. D. Yucel, Search for Boolean functions with excellent profiles in the rotation symmetric class, IEEE T. Inform. Theory, 53 (2007), 17431751.
6. H. Kim, S. Park and S. G. Hahn, On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2, Discrete Appl. Math., 157 (2009), 428432.
7. S. Mariai, T. Shimoyama and T. Kaneko, Higher order differential attack using chosen higher order differences, International Workshop on Selected Areas in Cryptography, 1556 (1998), 106117, SpringerVerlag, Berlin.
8. J. Pieprzyk and C. X. Qu, Fast hashing and rotationsymmetric functions, J. Univers. Comput. Sci., 5 (1999), 2031.
9. P. Stănică and S. Maitra, Rotation symmetric Boolean functions count and cryptographic properties, Discrete Appl. Math., 156 (2008), 15671580.
10. L. P. Yang, R. J. Wu and S. F. Hong, Nonlinearity of quartic rotation symmetric Boolean functions, Southeast Asian Bull. Math., 37 (2013), 951961.
11. X. Zhang, H. Guo, R. Feng, et al. Proof of a conjecture about rotation symmetric functions, Discrete Math., 311 (2011), 12811289.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)