AIMS Mathematics, 2020, 5(4): 3731-3740. doi: 10.3934/math.2020241.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Deferred statistical convergence of order α in metric spaces

1 Department of Mathematics, Firat University, 23119 Elazıg, TURKEY
2 Faculty of Education, Department of Mathematics Education, Mus Alparslan University, 49100 Mus, TURKEY
3 Faculty of Education, Harran University, Osmanbey Campus 63190, Sanlıurfa, TURKEY

In this paper, the concepts of deferred statistical convergence of order α and deferred strong Cesàro summability are generalized to general metric spaces and some relations between deferred strong Cesàro summability of order α and deferred statistical convergence of order α are given in general metric spaces.
  Figure/Table
  Supplementary
  Article Metrics

Keywords metric space; statistical convergence; deferred statistical convergence

Citation: Mikail Et, Muhammed Cinar, Hacer Sengul Kandemir. Deferred statistical convergence of order α in metric spaces. AIMS Mathematics, 2020, 5(4): 3731-3740. doi: 10.3934/math.2020241

References

  • 1. A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, London and New York, 1979.
  • 2. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • 3. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.    
  • 4. I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361-375.    
  • 5. B. Bilalov, T. Nazarova, On statistical convergence in metric space, Journal of Mathematics Research, 7 (2015), 37-43.
  • 6. N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162-169.
  • 7. M. Cinar, M. Karakas, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory A., 2013 (2013), 1-11.    
  • 8. R. Colak, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010 (2010), 121-129.
  • 9. J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63.
  • 10. M. Et, H. Şengül, On pointwise lacunary statistical convergence of order α of sequences of function, P. Natl. A. Sci. India A., 85 (2015), 253-258.
  • 11. M. Et, S. A. Mohiuddine, A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequal. Appl., 2013 (2013), 1-8.    
  • 12. M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci., 41 (2014), 17-30.
  • 13. M. Et, R. Colak, Y. Altin, Strongly almost summable sequences of order α, Kuwait J. Sci., 41 (2014), 35-47.
  • 14. E. Savas, M. Et, On $(\Delta _{\lambda }^{m},I)$-statistical convergence of order α, Period. Math. Hung., 71 (2015), 135-145.
  • 15. J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
  • 16. M. Işık, K. E. Akbaş, On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct., 8 (2017), 57-64.
  • 17. M. Işık, K. E. Et, On lacunary statistical convergence of order α in probability, AIP Conference Proceedings, 1676 (2015), 020045.
  • 18. M. Işık, K. E. Akbaş, On asymptotically lacunary statistical equivalent sequences of order in probability, ITM Web of Conferences, 13 (2017), 01024.
  • 19. E. Kayan, R. Colak, Y. Altin, d-statistical convergence of order α and d-statistical boundedness of order α in metric spaces, U. P. B. Sci. Bull., Series A, 80 (2018), 229-238.
  • 20. M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56 (2016), 357-366.    
  • 21. M. Küçükaslan, U. Dğer, O. Dovgoshey, On the statistical convergence of metric-valued sequences, Ukrains'kyi Matematychnyi Zhurnal, 66 (2014), 712-720.
  • 22. S. A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., 2012 (2012), 1-9.
  • 23. F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iran. J. Sci. Technol. A., 34 (2010), 335-338.
  • 24. F. Nuray, B. Aydin, Strongly summable and statistically convergent functions, Inform. Technol. Valdymas, 1 (2004), 74-76.
  • 25. T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
  • 26. H. Şengül, M. Et, On I-lacunary statistical convergence of order α of sequences of sets, Filomat 31 (2017), 2403-2412.
  • 27. H. Şengül, On Wijsman I-lacunary statistical equivalence of order (η, μ), J. Inequal. Spec. Funct., 9 (2018), 92-101.
  • 28. H. Şengül, On $S_{\alpha }^{\beta }\left(\theta \right)$-convergence and strong $N_{\alpha }^{\beta }\left(\theta,p\right) $-summability, J. Nonlinear Sci. Appl., 10 (2017), 5108-5115.    
  • 29. H. Şengül, M. Et, Lacunary statistical convergence of order (α, β) in topological groups, Creat. Math. Inform., 26 (2017), 339-344.
  • 30. H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model., 55 (2012), 2040-2051.    
  • 31. H. M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat, 31 (2017), 1573-1582.    
  • 32. R. P. Agnew, On deferred Cesàro mean, Ann. Math., 33 (1932), 413-421.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved