Citation: Sunil Kumar, Amit Kumar , Zaid Odibat, Mujahed Aldhaifallah, Kottakkaran Sooppy Nisar. A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow[J]. AIMS Mathematics, 2020, 5(4): 3035-3055. doi: 10.3934/math.2020197
[1] | D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, Int. J. Heat Mass Transfer, 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094 |
[2] | D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 2019. |
[3] | S. Bhatter, A. Mathur, D. Kumar, et al. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A, 537 (2020), 122578. |
[4] | J. Singh, A. Kilicman, D. Kumar, et al. Numerical study for fractional model of nonlinear predatorprey biological population dynamical system, Therm. Sci., 23 (2019), 2017-2025. doi: 10.2298/TSCI190725366S |
[5] | D. Kumar, J. Singh, D. Baleanu, et al. On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595. doi: 10.1002/mma.5458 |
[6] | A. Tassaddiq, I. Khan, K. S. Nisar, Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana-Baleanu fractional model, Chaos, Solitons Fractals, 130 (2020), 109445. |
[7] | A. Shaikh, K. S. Nisar, Transmission dynamics of fractional order Typhoid fever model using Caputo-Fabrizio operator, Chaos, Solitons Fractals, 128 (2019), 355-365. doi: 10.1016/j.chaos.2019.08.012 |
[8] | A. A. Abro, I. Khan, K. S. Nisar, Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit, Chaos, Solitons Fractals, 129 (2019), 40-45. doi: 10.1016/j.chaos.2019.08.001 |
[9] | K. Jothimani, K. Kaliraj, Z. Hammouch, et al. New results on controllability in the framework of fractional integrodifferential equations with nondense domain, Eur. Phys. J. Plus, 134 (2019), 441. |
[10] | C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos, Solitons Fractals, 125 (2019), 194-200 doi: 10.1016/j.chaos.2019.05.014 |
[11] | A. Akgül, Reproducing kernel method for fractional derivative with non-local and non-singular kernel, In: Fractional Derivatives with Mittag-Leffler Kernel, Springer International Publishing, 2019, 1-12. |
[12] | A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons Fractals, 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032 |
[13] | A. Akgül, A new method for approximate solutions of fractional order boundary value problems, Neural, Parallel Sci. Comput., 22 (2014), 223-237. |
[14] | A. Akgül, E. K. Akgül, A Novel method for solutions of fourth-order fractional boundary value problems, Fractal Fractional, 3 (2019), 33. |
[15] | E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023108. |
[16] | O. S. Iyiola, O. Tasbozan, A. Kurt, et al. On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion, Chaos, Solitons Fractals, 94 (2017), 1-7. doi: 10.1016/j.chaos.2016.11.003 |
[17] | A. Kurt, O. Tasbozan, D. Baleanu, New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G''/G expansion method and homotopy analysis methods, Opt. Quantum Electron., 49 (2017), 333. |
[18] | A. Kurt, O. Tasbozan, Y. Cenesiz, Homotopy analysis method for conformable Burgers-Kortewegde Vries equation, Bull. Math. Sci. Appl, 17 (2016), 17-23. |
[19] | A. Kurt, H. Rezazadeh, M. Senol, et al. Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves, J. Ocean Eng. Sci., 4 (2019), 24-32. doi: 10.1016/j.joes.2018.12.004 |
[20] | M. Senol, O. Tasbozan, A. Kurt, Numerical solutions of fractional Burgers' Type equations with conformable derivative, Chin. J. Phys., 58 (2019), 75-84. doi: 10.1016/j.cjph.2019.01.001 |
[21] | M. Senol, A. Kurt, E. Atilgan, et al. Numerical solutions of fractional Boussinesq-Whitham-BroerKaup and diffusive Predator-Prey equations with conformable derivative. New Trends Math. Sci., 7 (2019), 286-300. |
[22] | A. Kurt, O. Tasbozan, Approximate analytical solutions to conformable modified Burgers equation using homotopy analysis method, Ann. Math. Silesianae, 33 (2019), 159-167. doi: 10.2478/amsil-2018-0011 |
[23] | A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988 |
[24] | A. Akgül, On the solution of higher-order difference equations, Math. Methods Appl. Sci., 40 (2016), 6165-6171. |
[25] | A. Akgül, A novel method for the solution of blasius equation in semi-infinite domains An International, J Optim. Control: Theor. Appl., 7 (2017), 225-233. |
[26] | B. Boutarfa, A. Akgül, M. Inc, New approach for the Fornberg-Whitham type equations, J. Comput. Appl. Math., 312 (2017), 13-26. doi: 10.1016/j.cam.2015.09.016 |
[27] | J. N. Shin, J. H. Tang, M. S. Wu, Solution of shallow-water equations using least-squares finiteelement method, Acta Mech. Sin., 24 (2008), 523-532. doi: 10.1007/s10409-008-0151-4 |
[28] | T. Ozer, Symmetry group analysis of Benney system and an application for shallow-water equations. Mech. Res. Commun., 32 (2005), 241-54. |
[29] | I. Podlubny, Fractional differential equations, New York, USA, Academic Press, 1999. |
[30] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York, Wiley, 1993. |
[31] | S. Kumar, A numerical study for solution of time fractional nonlinear shallow-water equation in oceans, Z. Naturfors, 68 (2013), 1-7. doi: 10.5560/ZNC.2013.68c0001 |
[32] | S. Kumar, A. Kumar, I. K. Argyros, A new analysis for the Keller-Segel model of fractional order, Numer. Alg., 75 (2017), 213-228. doi: 10.1007/s11075-016-0202-z |
[33] | A. Kumar, S. Kumar, Modified analytical approach for fractional discrete KdV equations arising in particle vibrations, Proc. Natl. Acad. Sci. India Section A: Phys. Sci. J., 88 (2018), 95-106. doi: 10.1007/s40010-017-0369-2 |
[34] | A. S. Arife, S. K. Vanani, F. Soleymani, The Laplace homotopy analysis method for solving a general fractional diffusion equation arising in nano-hydrodynamics, J. Comput. Theory Nanosci, 10 (2014), 1-4. doi: 10.4086/toc.2014.v010a001 |
[35] | O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31-52. doi: 10.5373/jaram.1447.051912 |
[36] | A. El-Ajou, O. A. Arqub, S. Momani, et al. A novel expansion iterative method for solving linear partial differential equation of fractional order, Appl. Math. Comput., 257 (2015), 119-133 37. O. A. Arqub, Z. Abo-Hammour, R. Al-Badarneh, et al. A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Natl. Soc., 2013 (2013), 673829. |
[37] | 38. J. J. Yao, A. Kumar, S. Kumar, A fractional model to describe the Brownian motion of particles and its analytical solution., Adv. Mech. Eng., 7 (2015), 1-11. |
[38] | 39. A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81-95. doi: 10.1016/j.jcp.2014.08.004 |
[39] | 40. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D thesis, Shanghai Jiao Tong University, 1992. |
[40] | 41. Z. Odibat, A study on the convergence of homotopy analysis method, Appl. Math. Comput., 217 (2010), 782-789. |
[41] | 42. Z. Odibat, S. Momani, H. Xu, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Modell., 34 (2010), 593-600. doi: 10.1016/j.apm.2009.06.025 |
[42] | 43. S. Abbasbandy, F. S. Zakaria, Soliton solutions for the fifth-order KdV equation with the homotopy analysis method, Nonlinear Dyn., 51 (2008), 83-87. |
[43] | 44. S. Abbasbandy, Homotopy analysis method for the Kawahara equation, Nonlinear Anal. B, 11 (2010), 307-312. doi: 10.1016/j.nonrwa.2008.11.005 |
[44] | 45. Z. Odibat, A. S. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials, Math. Meth. Appl. Sci., 38 (2015), 991-1000. doi: 10.1002/mma.3136 |
[45] | 46. K. B. Oldham, J. Spanier, The Fractional Calculus: Integrations and Differentiations of Arbitrary Order, Academic Press, New York, 1974. |
[46] | 47. S. J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2003-2016. doi: 10.1016/j.cnsns.2009.09.002 |