AIMS Mathematics, 2020, 5(4): 3002-3009. doi: 10.3934/math.2020194.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Integral inequalities of Hermite-Hadamard type for exponentially subadditive functions

Department of Mathematics, Kırklareli University, 39100, Kırklareli, Turkey

In this paper, we introduce a new class of functions, which is called exponentially subadditive functions. We establish Hermite-Hadamard inequalities via exponentially subadditive functions. We also give some related inequalities according with Hermite-Hadamard inequalities. Results obtained in this paper can be viewed as generalization of previously known results.
  Figure/Table
  Supplementary
  Article Metrics

Keywords subadditive function; exponentially subadditive function; Hermite-Hadamard inequalities

Citation: Serap Özcan. Integral inequalities of Hermite-Hadamard type for exponentially subadditive functions. AIMS Mathematics, 2020, 5(4): 3002-3009. doi: 10.3934/math.2020194

References

  • 1. N. Alp, M. Z. Sarıkaya, M. Kunt, et al. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193-203.    
  • 2. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, SpringerVerlag, Berlin, 1975.
  • 3. F. M. Dannan, Submultiplicative and subadditive functions and integral inequalities of BellmanBihari type, J. Math. Anal. Appl., 120 (1986), 631-646.    
  • 4. S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • 5. E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31 (1957), 163-179.
  • 6. V. Hutson, The stability under perturbations of repulsive sets, J. Differ. Equations, 76 (1988), 77-90.    
  • 7. İ. İşcan, S. Turhan, S. Maden, Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral, New Trends Math. Sci., 4 (2016), 1-10.
  • 8. M. Kadakal, İ. İşcan, Inequalities of Hermite-Hadamard and Bullen type for AH-convex functions, Universal J. Math. Appl., 2 (2019), 152-158.
  • 9. M. Kunt, İ. İşcan, Fractional Hermite-Hadamard-Fejer type inequalities for GA-convex functions, Turkish J. Inequal., 2 (2018), 1-20.
  • 10. J. Matkowski, T. Swiatkowski, On subadditive functions, P. Am. Math. Soc., 119 (1993), 187-197.    
  • 11. M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inform. Sci., 12 (2018), 405-409.    
  • 12. V. I. Oseledec, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), 197-231.
  • 13. S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-11.    
  • 14. B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (2003), 1-9.
  • 15. C. E. M. Pearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55.
  • 16. F. Qi, T. Y. Zhang, B. Y. Xi, Hermite-Hadamard type integral inequalities for functions whose first derivatives are convex, Ukrainian Math. J., 67 (2015), 625-640.    
  • 17. R. A. Rosenbaum, Sub-additive functions, Duke Math. J., 17 (1950), 227-247.    
  • 18. D. Ruelle, Ergodic theory of differentiable dynamic systems, Publ. Math. Paris, 50 (1979), 27-58.    
  • 19. M. B. Ruskai, Inequalities for quantum entropy: A review with conditions for equality, J. Math. Phys., 43 (2002), 4358-4375.    
  • 20. M. Z. Sarikaya, H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30 (2016), 1315-1326.    
  • 21. M. Z. Sarikaya, M. A. Ali, Hermite-Hadamard type inequalities and related inequalities for subadditive functions, 2019, Available from: https://www.researchgate.net/publication/337022560.
  • 22. E. Set, M. E. Özdemir, M. Z. Sarıkaya, et al. Hermite-Hadamard type inequalities for (α, m)-convex functions via fractional integrals, Moroccan J. Pure Appl. Anal., 3 (2017), 15-21.
  • 23. G. H. Toader, On generalization of the convexity, Mathematica, 30 (1988), 83-87.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved