Citation: Owais Khan, Nabiullah Khan, Kottakkaran Sooppy Nisar, Mohd. Saif, Dumitru Baleanu. Fractional calculus of a product of multivariable Srivastava polynomial and multi-index Bessel function in the kernel F3[J]. AIMS Mathematics, 2020, 5(2): 1462-1475. doi: 10.3934/math.2020100
[1] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[2] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266 |
[3] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[4] | Mohra Zayed, Gamal Hassan . On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases. AIMS Mathematics, 2024, 9(4): 8712-8731. doi: 10.3934/math.2024422 |
[5] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[6] | Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346 |
[7] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[8] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
[9] | Mohamed Abdalla . On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics, 2021, 6(6): 6122-6139. doi: 10.3934/math.2021359 |
[10] | Tuba Gulsen, Sertac Goktas, Thabet Abdeljawad, Yusuf Gurefe . Sturm-Liouville problem in multiplicative fractional calculus. AIMS Mathematics, 2024, 9(8): 22794-22812. doi: 10.3934/math.20241109 |
Fractional calculus (FC) is a useful mathematical tool which deals with the study of fractional order integrals and derivatives. Excellent research on the topic of FC have given a useful concept of the theory and applications of FC operators of different areas of mathematical analysis having in mind for instance their meaningful role for aspect in the wave and diffusion equation and in the temperature field, among others. Since last few decades, many authors like Kilbas and Saigo [13], Kiryakova [16], Saigo [21], Saigo and Maeda [22], Saxena and Pogány [24], Srivastava and Saxena [30], and others have extensively studied the properties, applications and extensions of various fractional integral and differential operators of FC. It is notable that Baleanu et al. [4] obtained the images of the product of generalized Bessel functions in Saigo hypergeometric operators by providing extension of previous results due to Kilbas and Sebastian [14], Purohit et al. [20], Saxena et al. [25]. Lately, Mishra et al. [18] evaluated generalized FC formulas for the product of Srivastava polynomials and generalized Mittag-Leffler function via Marichev-Saigo-Maeda operators in terms of the Fox-Wright rΨs function. Further, Suthar [31], has given an extension of a results by Mishra et al. [18]. Thus, many authors have explored new approach of applications by making use of FC operators to investigate image formulae involving special functions of one and more variables which are useful in the problem of applied science such as fractional diffusion, fractional reaction, fractional stochastic theory, dynamical systems theory and anomalous diffusion in complex systems etc., see for example [7,8,9,10,11,12,30].
In this study we establish certain integral and derivation formulae of the product of multivariable Srivastava polynomial and multi–index Bessel function using generalized fractional hypergeometric operators. Moreover, we also find out some important special cases of our main results.
Throughout the usual notations have used C, R, R+, N and N0=N∪{0} for the sets of complex, real, positive real numbers, positive and non–negative integers, respectively.
Firstly, we recall the generalized hypergeometric fractional integrals and derivatives, introduced by Marichev [17] and later extended by Saigo and Maeda [22]. These operators known as the Marichev–Saigo–Maeda operators. The generalized FC operators involving the third Appell function (or the Horn F3(⋅) function in other words) in the kernel are defined in the following way.
Let μ,μ′,ε,ε′∈C, ℜ(γ)>0 and u>0. Then the left and right generalized Marichev–Saigo–Maeda–type fractional integral operators Iμ,μ′,ε,ε′,γ0+ and Iμ,μ′,ε,ε′,γ−, respectively, are defined as [22,p. 393,Eqs. (4.12),(4.13)]
(Iμ,μ′,ε,ε′,γ0+f)(u)=u−μΓ(γ)∫u0t−μ′(u−t)γ−1F3(μ,μ′,ε,ε′;γ;1−t/u,1−u/t)f(t)dt,(Iμ,μ′,ε,ε′,γ−f)(u)=u−μ′Γ(γ)∫∞ut−μ(t−u)γ−1F3(μ,μ′,ε,ε′;γ;1−u/t,1−t/u)f(t)dt, | (1.1) |
where F3 is the third Appell function defined by [29]
F3(μ,μ′,ε,ε′;γ;u,v)=∑m,n≥0(μ)m(μ′)n(ε)m(ε′)n(γ)m+numm!vnn!,(max{|u|,|v|}<1). |
In turn, the argument transformation t↦t/u in the integrand results in
(Iμ,μ′,ε,ε′,γ0+f)(u)=uγ−μ−μ′Γ(γ)∫10t−μ′(1−t)γ−1F3(μ,μ′,ε,ε′;γ;1−t,1−1/t)f(ut)dt,(Iμ,μ′,ε,ε′,γ−f)(u)=uγ−μ−μ′Γ(γ)∫∞1t−μ(t−1)γ−1F3(μ,μ′,ε,ε′;γ;1−1/t,1−t)f(ut)dt, | (1.2) |
which show that the considered integral operators are in fact weighted Beta–transforms of a suitable input function f at the 'wrapped' argument ut, with respect to the Appell F3–kernel function.
These operators become for the Saigo fractional integral operators [21]:
(Iμ+ε,0,−τ,0,μ0+f)(u)=(Iμ,ε,τ0+f)(u), | (1.3) |
(Iμ+ε,0,−τ,0,μ−f)(u)=(Iμ,ε,τ−f)(u). | (1.4) |
Next, consider the same parameter space as above, that is assume μ,μ′,ε,ε′∈C, ℜ(γ)>0 and u>0. Then the left and right generalized Marichev–Saigo–Maeda-type fractional differential operators Dμ,μ′,ε,ε′,γ0+ and Dμ,μ′,ε,ε′,γ−, respectively, are defined by the integrals [22]
(Dμ,μ′,ε,ε′,γ0+f)(u)=(I−μ′,−μ,−ε′,−ε,−γ0+f)(u)=(ddu)n(I−μ′,−μ,−ε′+n,−ε,−γ+n0+f)(u),(n=[ℜ(γ]+1)=1Γ(n−γ)(ddu)nuμ′∫u0tμ(u−t)n−γ−1×F3(−μ′,−μ,n−ε′,−ε,n−γ;1−t/u,1−u/t)f(t)dt, | (1.5) |
and
(Dμ,μ′,ε,ε′,γ−f)(u)=(I−μ′,−μ,−ε′,−ε,−γ−f)(u)=(−1)n(ddu)n(I−μ′,−μ,−ε′,n−ε,n−γ−f)(u),(ℜ(γ)>0;n=[ℜ(γ]+1)=(−1)nΓ(n−γ)(ddu)nuμ∫∞utμ′(t−u)n−γ−1×F3(−μ′,−μ,−ε′,n−ε,n−γ;1−u/t,1−t/u)f(t)dt; | (1.6) |
here, and in what follows [x] denotes the integer part of some x∈R. The previous fractional differentiation formulae possess equivalent forms:
(Dμ,μ′,ε,ε′,γ0+f)(u)=1Γ(n−γ)(ddu)nun+μ+μ′−γ∫10tμ(1−t)n−γ−1×F3(−μ′,−μ,n−ε′,−ε,n−γ;1−t,1−1/t)f(ut)dt,(Dμ,μ′,ε,ε′,γ−f)(u)=(−1)nΓ(n−γ)(ddu)nun+μ+μ′−γ∫∞1tμ′(t−1)n−γ−1×F3(−μ′,−μ,−ε′,n−ε,n−γ;1−1/t,1−t)f(ut)dt |
within the same parameter range. Moreover, these operators reduce to the Saigo fractional differential operators [21]
(Dμ+ε,0,−τ,0,μ0+f)(u)=(Dμ,ε,τ0+f)(u), | (1.7) |
(Dμ+ε,0,−τ,0,μ−f)(u)=(Dμ,ε,τ−f)(u). | (1.8) |
We recall two relations needful in obtaining our main results. Firstly [22,p. 394,Eq. (4.18)]
(Iμ,μ′,ε,ε′,γ0+tρ−1)(u)=Γ(ρ)Γ(ρ+γ−μ−μ′−ε)Γ(ρ+ε′−μ′)Γ(ρ+γ−μ−μ′)Γ(ρ+γ−μ′−ε)Γ(ρ+ε′)uρ−μ−μ′+γ−1, | (1.9) |
valid under the constraint ℜ(ρ)>max{0,ℜ(μ+μ′−γ),ℜ(μ′−ε′)} and secondly, for all ℜ(ρ)<1+min{ℜ(−ε),ℜ(μ+μ′−γ),ℜ(μ+ε′−γ)} there holds [22,p. 394,Eq. (4.19)]
(Iμ,μ′,ε,ε′,γ−tρ−1)(u)=Γ(1+μ+μ′−γ−ρ)Γ(1+μ+ε′−γ−ρ)Γ(1−ε−ρ)Γ(1−ρ)Γ(1+μ+μ′+ε′−γ−ρ)Γ(1+μ−ε−ρ)uρ−μ−μ′+γ−1. | (1.10) |
The series form of the Fox–Wright generalized hypergeometric function rΨs [6,33] is
rΨs[z]=rΨs[(γ1,γ′1),⋯,(γr,γ′r)(l1,l′1),⋯,(ls,l′s)|z]=∑k≥0Γ(γ1+γ′1k)⋯Γ(γr+γ′rk)Γ(l1+l′1k)⋯Γ(lr+l′rk)zkk!. | (1.11) |
Here the coefficients γ′1,⋯,γ′r, l′1,⋯,l′s are positive and the series absolutely converges for all z∈C when Δ=1+∑sj=1l′j−∑rm=1γ′m>0, while in the case Δ=0 the convergence of the series (1.11) occur inside the circle [15,p. 56,Theorem 1.5]
|z|<r∏j=1γ′j−γ′js∏m=1l′ml′m. |
We also point out the Fox's H function representation formula of the Fox–Wright generalized hypergeometric function [15,p. 67,Eq. (1.12.68)]
rΨs[z]=H1,rr,s+1[−z|(1−γ1,γ′1),⋯,(1−γr,γ′r)(0,1),(1−l1,l′1),⋯,(1−ls,l′s)], |
where H1,rr,s+1[z] stands for the Fox's H–function, which definition is given via Mellin–Barnes type complex integral, see [6].
The generalized multi-index Bessel function was introduced in a power series form by Nisar et al. [19] as
J(αj)m,τ,c(βj)m,κ,b(z)=∑n≥0(τ)κnm∏j=1Γ(αjn+βj+1+b2)(cz)nn!,(m∈N), | (1.12) |
where αj,j=1,2,⋯,m, τ,δ,b,c∈C; ∑mj=1ℜ(αj)>max{0,ℜ(κ)−1}; ℜ(βj)>0,j=1,2,⋯,m, ℜ(τ)>0; ℜ(δ)>0 and (λ)n denotes the familiar Pochhammer symbol viz.
(λ)μ=Γ(λ+μ)Γ(λ)={1(μ=0)λ(λ+1),....,(λ+n−1)(λ∈C∖Z−0;μ∈N), |
while (0)0 is conventionally taken to be unity and Z−0 signifies the set of non–positive integers.
Consider some special cases of J(αj)m,τ,c(βj)m,κ,b(z).
(i) If we put κ=0,b=c=m=1, α1 = 1, β1=ν and replace z by z2/4 in (1.12) we arrive at the Bessel function of the first kind [5,p.7.2,Eq.(2)]
J1,τ,1ν,0,1(z2/4)=(2z)νJν(z),(z,ν∈C;R(ν)>0). |
(ii) For b=−1,c=1 (1.12) reduces to the multi–index Mittag–Leffler function [23]
J(αj)m,τ,1(βj)m,κ,−1(z)=E(αj)m,τ(βj)m,κ(z). | (1.13) |
(iii) A connection to Fox–Wright function rΨs is
J(αj)m,τ,c(βj)m,k,b(z)=Γ(δ)Γ(τ)2Ψm+1[(τ,κ)(β1+1+b2,α1),⋯,(βm+1+b2,αm)|cz]. |
(iv) In turn, the Fox's H–function representation becomes
J(αj)m,τ,c(βj)m,k,b(z)=1Γ(τ)H0,11,m+1[−cz|(1−τ,κ)(0,1),(β1+1−b2,α1),⋯,(βm+1−b2,αm)]. |
In the sequel we shall need the definition of the multivariable Srivastava polynomials introduced by Srivastava and Garg [28,p. 2,Eq. (1.4)] as the s–triple series
Sp1,p2,⋯,psd(z1,⋯,zs)=p1k1+⋯+psks≤d∑k1,...,ks=0(−d)p1k1+⋯+psksA(d,k1,⋯,ks)zk11k1!⋯zkssks!, | (1.14) |
where (d,p1,⋯,ps)∈Ns+10 and the coefficients A(d,k1,⋯,ks)∈C. Evidently, the case s=1 corresponds to the polynomial of the form [27]:
Spd(z)=[d/p]∑k=0(−d)pkA(d,k)zkk!,(d∈N0). |
In this section we present fractional integral formulae involving the product of multivariable Srivastava polynomials and multi-index Bessel function using left and right Marichev-Saigo-Maeda operators, which are expressed in terms of Fox-Wright function under the above specified conditions of (1.11).
Theorem 1. For all μ,μ′,ε,ε′,γ,τ,αj,βj,ρ ∈C,(j=1,2,⋯,m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(γ)>0, ℜ(ρ)>max{0,ℜ(μ+μ′+ε−γ),ℜ(μ′−ε′)}∈R+. Then we have the left fractional integral formula
(Iμ,μ′,ε,ε′,γ0+(tρ−1Sp1,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u)=uρ+γ−μ−μ′−1p1k1+⋯+psks≤d∑k1,⋯,ks=0(−d)p1k1+⋯+psksA(d,k1,⋯,ks)(y1)k1k1!,⋯,(ys)ksks!u∑sj=1λjkj×4Ψm+3[(ρ+γ−μ−μ′−ε+∑sj=1λjkj,ν),(ρ+ε′−μ′+∑sj=1λjkj,ν),(ρ+γ−μ−μ′+∑sj=1λjkj,ν),(ρ+ε′+∑sj=1λjkj,ν),(ρ+∑sj=1λjkj,ν),(τ,κ)(ρ+γ+ε′−μ′+∑sj=1λjkj,ν),(βj+b+12,αj)mj=1|zcuν]. | (2.1) |
Proof. Put the multi–index Bessel function (1.12) and the multivariable Sd polynomial (1.14) into
I1:=(Iμ,μ′,ε,ε′,γ0+tρ−1Sp1,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,q,b(ztν))(u) |
and by the legitimate changing of the order of integration and summation we have
I1=p1k1+⋯+psks≤d∑k1,...,ks=0(−d)p1k1+⋯+psksA(d,k1,...,ks)yk11k1!,⋯,ykssks!×∑n≥0cn(τ)κnΓ(αjn+βj+b+12)znn!(Iμ,μ′,ε,ε′,γ0,+tρ+s∑j=1λjkj+νn−1)(u), |
Applying (1.9) we conclude
I1=1Γ(τ)p1k1+⋯+psks≤d∑k1,...,ks=0(−d)p1k1+⋯+psksA(d,k1,...,ks)yk11k1!,⋯,ykssks!∑n≥0cnΓ(τ+κn)Γ(αjn+βj+b+12)×Γ(ρ+∑sj=1λjkj+νn)Γ(ρ+∑sj=1λjkj+νn+γ−μ−μ′−ε)Γ(ρ+∑sj=1λjkj+νn+ε′)Γ(ρ+γ−μ−μ′+∑sj=1λjkj+νn)×Γ(ρ+ε′−μ+∑sj=1λjkj+νn)Γ(ρ+∑sj=1λjkj+νn+γ−μ′−ε)znn!uρ+γ−μ−μ′+∑sj=1λjkj+νn−1. |
Reducing the expression in view of (1.11) we achieve the required result (2.1).
In view of the relation (1.3), we deduce a first consequence of Theorem 1.
Corollary 2.1. For all μ,μ′,ε,ε′,γ,τ,αj,βj,ρ ∈C, j=1,⋯,m which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0,ℜ(κ)−1}, ℜ(γ)>0, ℜ(ρ)>max{0,ℜ(ε−γ)}. Then we have
(Iμ,ε,γ0+(tρ−1Sp1,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u)=uρ+γ−μ−μ′−1p1k1+⋯+psks≤d∑k1,...,ks=0(−d)p1k1+⋯+psksA(d,k1,...,ks)(y1)k1k1!,⋯,(ys)ksks!u∑sj=1λjkj×3Ψm+2[(ρ+γ−ε+∑sj=1λjkj,ν),(ρ+∑sj=1λjkj,ν),(τ,κ)(ρ+μ+γ+∑sj=1λjkj,ν),(ρ−ε+∑sj=1λjkj,ν),(βj+b+12,αj)mj=1|zcuν], | (2.2) |
where (θj)mj=1 stands for the sequence θ1,⋯,θm.
Theorem 2. For all μ,μ′,ε,ε′,γ,τ,αj,βj,ρ ∈C (j=1,⋯,m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0,ℜ(κ)−1}; ℜ(γ)>0, ℜ(ρ)<1+min{ℜ(−ε),ℜ(μ+μ′−γ),ℜ(μ−ε′−γ)} we have
(Iμ,μ′,ε,ε′,γ−(t−γ−ρSp1,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(zt−ν)))(u)=u−ρ−μ−μ′−1×p1k1+⋯+psks≤d∑k1,⋯,ks=0(−d)p1k1+⋯+psksA(d,k1,⋯,k2)yk11k1!,⋯,ykssks!u∑sj=1λjkj×4Ψm+3[(ρ+μ+μ′−∑sj=1λjkj,ν),(ρ+μ+ε′−∑sj=1λjkj,ν),(ρ+γ−∑sj=1λjkj,ν),(ρ+μ+μ′+ε′−γ−ρ−∑sj=1λjkj,ν),(ρ−ε+γ−∑sj=1λjkj,ν),(τ,κ)(ρ+μ−ε+γ−∑sj=1λjkj,ν),(βj+b+12,αj)mj=1|zcuν]. | (2.3) |
Proof. To establish the stated prove that above result, using (1.12) and (1.14) as series form, and than arranging the order of integration and summation (which is valid under the given condition of Theorem 2), left hand side of (2.3) becomes
(Iμ,μ′,ε,ε′,γ0−(tρ−1Sp1,p2,⋯,psd(y1tλ1,..,ystλs)J(αj)m,τ,c(βj)m,κ,b(zt−ν)))(u) | (2.4) |
=p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks! |
×∞∑n=0cn(τ)κnΓ(αjn+βj+b+12)znn!(Iμ,μ′,ε,ε′,γ0+(t−ρ−γ+∑sj=1λjkj−νn))(u). |
Now, applying the relation (1.10), we have
=p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!∞∑n=0cnΓ(τ+κn)Γ(αjn+βj+b+12) |
×Γ(ρ+μ+μ′−∑sj=1λjkj+νn)Γ(ρ+μ+ε′−∑sj=1λjkj+νn)Γ(ρ+γ−∑sj=1λjkj+νn)Γ(ρ+μ+μ′+ε′−∑sj=1λjkj+νn) |
×1Γ(τ)Γ(ρ+μ+ε′−∑sj=1λjkj+νn)Γ(1+μ−ε′−(ρ+∑sj=1λjkj+νn))znn!u−ρ−μ−μ′+∑sj=1λjkj+νn. |
Finally, solving the above expression with the help of (1.11), we achieve the required result (2).
In view of the relation (1.4), we get the following consequence of Theorem 2.
Corollary 2.2. For all μ,ε,γ,τ,αj,βj,ρ ∈C (j = 1, 2, ⋯, m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(μ)>0, ℜ(1−γ−ρ)<1+min{ℜ(−ε),ℜ(−γ)} then following integral formula holds true:
(Iμ,ε,γ0−(t−γ−ρSp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(zt−ν)))(u)=u−ρ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×3Ψm+2[(ρ+μ+δ−∑sj=1λjkj,ν),(τ,κ),(ρ+μ−∑sj=1λjkj,ν),(βj+b+12,αj)mj=1, |
(ρ+μ+ε−∑sj=1λjkj,ν)(ρ+2μ+ε+γ−∑sj=1λjkj,ν)|zcuν]. | (2.5) |
Here, we compute fractional derivative formulae involving the product of multivariable Srivastava polynomials and multi-index Bessel function using left and right Marichecv-Saigo-Maeda operators, which are expressed in terms of Fox-Wright function under the given conditions of (1.11).
Theorem 3. For all μ,μ′,ε,ε′,γ,τ,αj,βj,ρ ∈C (j = 1, 2, ⋯, m) be such that ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(γ)>0, ℜ(ρ)>max{0,ℜ(γ−μ−μ′−ε′),ℜ(μ−ε)}. Then left-sided fractional derivative formula holds true:
(Dμ,μ′,ε,ε′,γ0+(tρ−1Sp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u)=uρ+γ−μ−μ′−1 |
×p1k1,...,psks⩽d∑k1,...,ks=0(−d)p1k1,...,psksA(d;k1,...,ks)yk11k1!,....,ykssks!u∑sj=1λjkj |
×4Ψm+3[(ρ−γ+μ+μ′+ε′+∑sj=1λjkj,ν),(ρ−ε+μ+∑sj=1λjkj,ν),(ρ−γ+μ−ε′+∑sj=1λjkj,ν),(ρ−ε+∑sj=1λjkj,ν), |
(ρ+∑sj=1λjkj,ν),(τ,κ)(ρ−γ+μ−μ′+∑sj=1λjkj,ν),(βj+b+12,αj)mj=1|zcuν]. | (3.1) |
Proof. In order to prove that above result, using (1.12) and (1.14) as series form, and than arranging the order of integration and summation (which is valid under the given condition of Theorem 3), left hand side of (3.1) becomes
(Dμ,μ′,ε,ε′,γ0+(tρ−1Sp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u) |
=p1k1,...,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks! |
×∞∑n=0cn(τ)κnΓ(αjn+βj+b+12)znn!(Dμ,μ′,ε,ε′,γ0+(tρ+∑sj=1λjkj+νn−1))(u). |
Applying the result (1.5) and (1.9), we get
=p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!∞∑n=0cnΓ(τ+κn)Γ(αjn+βj+b+12) |
×Γ(ρ+∑sj=1λjkj+νn)Γ(ρ+∑sj=1λjkj+νn−γ+μ+μ′−ε′)Γ(ρ+∑sj=1λjkj+νn−ε)Γ(ρ−γ+μ+μ′+∑sj=1λjkj+νn) |
×1Γ(τ)Γ(ρ−ε+μ+∑sj=1λjkj+νn)Γ(ρ+∑sj=1λjkj+νn−γ+μ′−ε′)znn!uρ−γ+μ+μ′+∑sj=1λjkj+νn−1. |
Finally, using definition (1.11), we achieve the desired result (3.1).
In view of the relation (1.7), we get the following consequence of Theorem 3.
Corollary 3.1. For all μ,ε,γ,τ,αj,βj,ρ ∈C (j = 1, 2, ⋯, m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(γ)>0 ℜ(ρ)>max{0,ℜ(ε−γ)}, then left-sided fractional derivative formula holds true:
(Dμ,ε,γ0+(tρ−1Sp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u)=uρ+γ−μ−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×3Ψm+2[(ρ+γ+μ+ε+∑sj=1λjkj,ν),(ρ+∑sj=1λjkj,ν),(ρ+γ+∑sj=1λjkj,ν),(ρ+ε+∑sj=1λjkj,ν), |
(τ,κ)(βj+b+12,αj)mj=1|zcuν]. | (3.2) |
Theorem 4. For all μ,μ′,ε,ε′,τ,γ,αj,βj,ρ ∈C (j = 1, 2, ⋯, m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(γ)>0, ℜ(ρ)<1+min{ℜ(−ε′),ℜ(μ+μ′−γ),ℜ(μ+ε−γ)}. Then right-sided fractional derivative formula holds true:
(Dμ,μ′,ε,ε′,γ0−(tγ−ρSp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(zt−ν)))(u)=uρ+γ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×4Ψm+3[(ρ−μ−μ′−∑sj=1λjkj,ν),(ρ−μ−μ′−∑sj=1λjkj,ν),(ρ−μ−μ′−ε−∑sj=1λjkj,ν),(ρ−γ−∑sj=1λjkj,ν), |
(ρ−μ′−ε−∑sj=1λjkj,ν),(τ,κ)(ρ−γ+ε′−μ−∑sj=1λjkj,ν),(βj+b+12,αj)mj=1|zcu−ν]. | (3.3) |
Proof. Applying (1.12) and (1.14), and then arranging the order of integration and summation (which is valid under the condition of Theorem 4), left hand side of (3.3) can be write as
(Dμ,μ′,ε,ε′,γ0−(tγ−ρSp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u) |
=p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks! |
×∞∑n=0cn(τ)κnΓ(αjn+βj+b+12)znn!(Dμ,μ′,ε,ε′,γ0−(tρ+∑sj=1λjkj−νn−1))(u). |
Now in view of (1.6) and (1.10) we obtain the following expression
=p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!∞∑n=0cnΓ(τ+κn)Γ(αjn+βj+b+12) |
×Γ(ρ−μ−μ′−∑sj=1λjkj+νn)Γ(ρ−μ′−ε+∑sj=1λjkj+νn)Γ(ρ−μ−μ′−ε+∑sj=1λjkj+νn)Γ(ρ−γ−μ+ε′−∑sj=1λjkj+νn) |
×1Γ(τ)Γ(ρ+ε′−γ−∑sj=1λjkj+νn)Γ(ρ−γ−∑sj=1λjkj+νn)znn!u−ρ+γ−μ−μ′−∑sj=1λjkj+νn−1. |
Solving the above expression with the help of (1.1), we achieve the desired result (3.3).
In view of the relation (1.8), we get the following consequence of Theorem 4.
Corollary 3.2. For all μ,ε,γ,τ,αj,βj,ρ ∈C (j = 1, 2, ⋯, m) which satisfy ℜ(βj)>0, ∑mj=1ℜ(αj)>max{0;ℜ(κ)−1}, ℜ(γ)>0, ℜ(1−γ−ρ)<1+min{ℜ(−ε),ℜ(−γ)}. Then right-sided fractional derivative formula holds true:
{Dμ,ε,γ0−(tγ−ρSp1,p2,⋯,psd(y1tλ1,⋯,ystλs)J(αj)m,τ,c(βj)m,κ,b(zt−ν))}(u)=uρ+γ−μ−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×3Ψm+2[(ρ−μ−ε−∑sj=1λjkj,ν),(ρ−γ−∑sj=1λjkj,ν),(ρ−μ−ε−∑sj=1λjkj,ν),(ρ−μ−∑sj=1λjkj,ν), |
(τ,κ)(βj+b+12,αj)mj=1|zcu−ν]. | (3.4) |
Here we make the further special cases of theorems and its corollaries.
(1) In view of the relation (1.13), we arrive at the following particular cases of Theorem 1, Theorem 2, Theorem 3, and Theorem 4, respectively.
Corollary 4.1. Under stated the given conditions in Theorem 1, then left-sided fractional integral identity holds true
(Iμ,μ′,ε,ε′,γ0+(tρ−1Sp1,p2,⋯,psd(y1tλ1,⋯,ystλs)E(αj)m,τ,(βj)m,κ,(ztν)))(u)=uρ+γ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×4Ψm+3[(ρ+γ−μ−μ′−ε+∑sj=1λjkj,ν),(ρ+ε′−μ′+∑sj=1λjkj,ν),(ρ+γ−μ−μ′+∑sj=1λjkj,ν),(ρ+ε′+∑sj=1λjkj,ν), |
(ρ+∑sj=1λjkj,ν),(τ,κ)(ρ+γ+ε′−μ′+∑sj=1λjkj,ν),(βj,αj)mj=1|zuν]. | (4.1) |
Corollary 4.2. Under stated the given assumptions in Theorem 2, then right-sided fractional integral identity holds true.
(Iμ,μ′,ε,ε′,γ0−(tρ−1Sp1,p2,⋯,psd(y1tλ1,...,ystλs)E(αj)m,τ,(βj)m,κ,(zt−ν)))(u)=u−ρ+γ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u(∑sj=1λjkj) |
×4Ψm+3[(ρ+μ+μ′−∑sj=1λjkj,ν),(ρ+μ+ε′−∑sj=1λjkj,ν),(ρ+γ−∑sj=1λjkj,ν),(ρ+μ+μ′+ε′−γ−ρ−∑sj=1λjkj,ν), |
(ρ−ε+γ−∑sj=1λjkj,ν),(τ,κ)(ρ+μ−ε+γ−∑sj=1λjkj,ν),(βj,αj)mj=1|zuν]. | (4.2) |
Corollary 4.3. Under stated the given conditions in Theorem 3, then left-sided fractional derivative identity holds true.
(Dμ,μ′,ε,ε′,γ0+(tρ−1Sp1,p2,κ,psd(y1tλ1,κ,ystλs)E(αj)m,τ,(βj)m,κ(ztν)))(u)=uρ+γ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)ωk11k1!,⋯,ωkssks!u∑sj=1λjkj |
×4Ψm+3[(ρ−γ+μ+μ′+ε′+∑sj=1λjkj,ν),(ρ−ε+μ+∑sj=1λjkj,ν),(ρ−γ+μ−ε′+∑sj=1λjkj,ν),(ρ−ε+∑sj=1λjkj,ν), |
(ρ+∑sj=1λjkj,ν),(τ,κ)(ρ−γ+μ−μ′+∑sj=1λjkj,ν),(βj,αj)mj=1|zuν]. | (4.3) |
Corollary 4.4. Under stated the given conditions in Theorem 4, then following right-sided fractional derivative identity holds true.
(Dμ,μ′,ε,ε′,γ0−(tρ−1Sp1,p2,⋯,psd(y1tλ1,⋯,ystλs)E(αj)m,τ(βj)m,κ(ztν)))(u)=uρ+γ−μ−μ′−1 |
×p1k1,⋯,psks⩽d∑k1,⋯,ks=0(−d)p1k1,⋯,psksA(d;k1,⋯,ks)yk11k1!,⋯,ykssks!u∑sj=1λjkj |
×4Ψm+3[(ρ−μ−μ′−∑sj=1λjkj,ν),(ρ−μ−μ′−∑sj=1λjkj,ν),(ρ−μ−μ′−ε−∑sj=1λjkj,ν),(ρ−γ−∑sj=1λjkj,ν), |
(ρ−μ′−ε−∑sj=1λjkj,ν),(τ,κ)(ρ−γ+ε′−μ−∑sj=1λjkj,ν),(βj,αj)mj=1|zu−ν]. | (4.4) |
(ii) Taking s = 1 and Ad,k = 1 in (1.14), we have multivarible Srivastava polynomials reduces to the Gould-Hoper polynomials (see [28,p.8]) i.e,
Spd[y]→(−1)d(yh)y/pHpy[−(hy)1/d,h], |
our integral formula (2.1) readily yields the following special cases:
Corollary 4.5. Under stated the given conditions in Theorem 1, then left sided fractional integral formula involving the product of Gould-Hopper polynomials and multi–index Bessel function is given as:
(Iμ,μ′,ε,ε′,γ0+(tρ−1Hpd(ytλ)J(αj)m,τ,c(βj)m,κ,b(ztν)))(u)=uρ+γ−μ−μ′−1 |
×y/p∑k=0(dpk)(pk)!(k)!hkyd−pkuλk |
×4Ψm+3[(ρ+γ−μ−μ′−ε+λk,ν),(ρ+ε′−μ′+λk,ν),(ρ+γ−μ−μ′+λk,ν)(ρ+ε′+λk,ν), |
(ρ+λk,ν),(τ,κ)(ρ+γ+ε′−μ′+λk,ν),(βj+b+12,αj)mj=1|zcuν]. | (4.5) |
Further, consequences of integral formulas (2.3), (3.1), (3.3) including above polynomials, can be similarly deduced.
(iii) It can be easily seen that setting b = 1, c = -1, d = 0, A0,0 = 1 then Sp0[y]→ 1 in resulting identities [(2.1), (2.3)], respectively yields the corresponding known results in Agarwal et al. [2,P.296,Eqs.(3.2)(4.1)].
(iv) We have for m = 1, multi–index Mittag-Leffler function reduces to four parameters Mittag-Leffler function and s = 1, Sp1⋯psd[y]→ Spd[y]. Therefore, applying these values in our results [(4.1), (4.2), (4.3), (4.4)], respectively, then we can easily obtain the known results investigated by Mishra et al. [18,p.4,8,Eqs.(16),(23),(29),(4)].
(v) On setting s = 1, d = 0, A0,0 = 1 then Sp0[y]→ 1 in obtained results [(2.2), (2), (3.2), (3.4)], then we can easily deduce the known results given by Suthar et al. [32,p.28,Eqs.(2.9),(2.11),(2.13),(2.15)].
(vi) Further, if we set multivariable Srivastava polynomials Sp1⋯psd[y] to unity with some suitable parametric replacements in resulting identities yields the corresponding known integral and derivative formulas in Agarwal and Nieto [1,p.540-541,Eqs.(14)(18)], Ahmed [3,p.2-4,Eqs.(3.1)(4.1)(5.1)(6.1)], Saxena et al. [26,p.17,20,Eqs.(2.4)(4.8)].
In this manuscript, we have investigated four image formulas of generalized fractional hypergeometric (of Marichev-Saigo-Maeda) operators involving the product of multivariable Srivastava polynomials and multi–index Bessel function, which are expressed in terms of Fox- Wright function. The results presented in this article are extensions of the known results given by various authors (see, e.g, [2,3,18,19,26,32]). Moreover, the results derived in this paper also correspondence to Saigo hypergeometric fractional calculus operators as special cases and it can be easily seen that, if we set ε = -μ and ε = 0 in (1.3) and (1.4), they yields the Erdelyi-Kober, the Riemann-Liouville, and the Weyl fractional integral and derivative operators. Thereby, the results presented here can also be obtained corresponding to the above well known fractional operators. Further, by suitably specializing the coefficients An,p of the polynomials Sp1⋯psd[ω], our results can be deduced to the classical orthogonal polynomials such as the Hermite polynomials Hn[ω], the Jacobi polynomials J(p,q)n[ω], and Laguerre polynomials L(p)n[ω], and Bessel polynomials Yn[ω,p,q]. Therefore, the results derived in this article would at once give way a large number of results involving a many diversity of special functions occurring in the problems of mathematical physics, science, and engineering, etc.
The author K.S. Nisar thanks to Prince Sattam bin Abdulaziz University, Saudi Arabia for providing facilities and support.
The authors declare there is no conflicts of interest in this paper.
[1] | P. Agarwal, J. Nieto, Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math., 13 (2015), 537-546. |
[2] |
P. Agarwal, S. V. Rogosin, J. J. Trujillo, Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions, Proceedings-Mathematical Sciences, 125 (2015), 291-306. doi: 10.1007/s12044-015-0243-6
![]() |
[3] | S. Ahmed, On the generalized fractional integrals of the generalized Mittag-Leffler function, Springer Plus, 3 (2014), 198. |
[4] | D. Baleanu, P. Agarwal, S. D. Purohit, Certain fractional integral formulas inmvolving the product of generalized Bessel functions, The Scientific World Journal, 2013 (2013), 1-9. |
[5] | A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Higher Transcendental Functions, New York, 1953. |
[6] | C. Fox, The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429. |
[7] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[8] |
M. Kamarujjama, O. Khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236. doi: 10.1016/j.cam.2018.11.014
![]() |
[9] |
M. Kamarujjama, N. U. Khan, O. Khan, The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations, J. Anal., 27 (2019), 1029-1046. doi: 10.1007/s41478-018-0160-z
![]() |
[10] | M. Kamarujjama, N. U. Khan, O. Khan, et al. Extended type k-Mittag-Leffler function and its applications, Int. J. Appl. Comput. Math., 5 (2019), 72. |
[11] | M. Kamarujjama, N. U. Khan, O. Khan, Fractional calculus of generalized p-k-Mittag-Leffler function using Marichev-Saigo-Maeda operators, Arab J. Math. Sci., 25 (2019), 156-168. |
[12] | O. Khan, N. U. Khan, D. Baleanu, et al. Computable solution of fractional kinetic equations using Mathieu-type series, Adv. Differ. Equ-NY, 2019 (2019), 234. |
[13] | A. A. Kilbas, M. Saigo, Fractional calculus of the H-function, Fukuoka Univ. Sci. Rep., 28 (1998), 41-51. |
[14] |
A. A. Kilbas, N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integr. Transf. Spec. F., 19 (2008), 869-883. doi: 10.1080/10652460802295978
![]() |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Amsterdam, 2006. |
[16] | V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl., 59 (2010), 128-141. |
[17] | O. L. Marichev, Volterra equation of Mellin convolution type with a horn function in the kernel, Izvestiya Akademii Nauk BSSR Seriya Fiziko-Matematicheskikh Nauk, 1 (1974), 128-129. |
[18] | V. N. Mishra, D. L. Suthar, S. D. Purohit, Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function, Cogent Mathematics & Statistics, 4 (2107), 1320830. |
[19] | K. S. Nisar, S. D Purohit, R. K. Parmar, Fractional calculus and certain integrals of generalized multi-index Bessel function, arXiv:1706.08039, 2017. |
[20] | S. D. Purohit, D. L. Suthar, S. L. Kalla, Marichev Saigo Maeda fractional integration operators of Bessel, Matematiche (Catania), 61 (2012), 21-32. |
[21] | M. Saigo, A remark on integral operators involving the gauss hypergeometric functions, Math. Rep. Coll. Gen. Educ. Kyushu Univ., 11 (1978), 135-143. |
[22] | M. Saigo, N. Maeda, More generalization of fractional calculus. In: P. Rusev, I. Dimovski and V. Kiryakova (Eds.) Proceedings of the 2nd International Workshop on Transform Methods and Special Functions, Varna 1996, Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Sofia, 1998. |
[23] | R. K. Saxena, K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler functions, J. Fract. Calc., 37 (2010), 43-52. |
[24] | R. K. Saxena, T. K. Pogány, On fractional integration formulae for Aleph function, Appl. Math. Comput., 218 (2011), 985-990. |
[25] | R. K. Saxena, J. Ram, D. Kumar, Generalized fractional integration of the product of Bessel functions of first kind, Proceeding of the 9th Annual Conference SSFA, 9 (2010), 15-27. |
[26] | R. K. Saxena, M. Saigo, Certain properties of the fractional calculus associated with generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8 (2005), 141-154. |
[27] | H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14 (1972), 1-6. |
[28] | H. M. Srivastava, M. Garg, Some integrals involving a general class of polynomials and the multivariable H-function, Rev. Roum. Phys., 32 (1987), 685-692. |
[29] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Chichester, 1985. |
[30] | H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1-52. |
[31] | D. L. Suthar, H. Hababenon, H. Tadesse, Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials, Int. J. Appl. Comput. Math., 4 (2018), 1-12. |
[32] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[33] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 10 (1935), 257-270. |
1. | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, A detailed study on a new $(2 + 1)$-dimensional mKdV equation involving the Caputo–Fabrizio time-fractional derivative, 2020, 2020, 1687-1847, 10.1186/s13662-020-02789-5 | |
2. | Enes Ata, İ Onur Kıymaz, Praveen Agarwal, Shilpi Jain, Shaher Momani, Fractional calculus of modified special functions involving the generalized M-series in their kernels and illustrative examples, 2024, 11, 26668181, 100720, 10.1016/j.padiff.2024.100720 |