[1]
|
Gast AP, Russel WB (1998) Simple Ordering in Complex Fluids. Phys Today 51: 24–30.
|
[2]
|
Hall N (2000) The New Chemistry, Cambridge University Press.
|
[3]
|
Evans DF, Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, New York: Wiley.
|
[4]
|
Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J Phys-Condens Mat 16: S4877–S4886. doi: 10.1088/0953-8984/16/42/006
|
[5]
|
Seul M, Andelman D (1995) Domain Shapes and Patterns: The Phenomenology of Modulated Phases. Science 267: 476–483. doi: 10.1126/science.267.5197.476
|
[6]
|
Whitesides GM, Boncheva M (2002) Beyond molecules: Self-assembly of mesoscopic and macroscopic components. P Natl Acad Sci USA 99: 4769–4774. doi: 10.1073/pnas.082065899
|
[7]
|
Baxter RJ (1968) Percus-Yevick Equation for Hard Spheres with Surface Adhesion. J Chem Phys 49: 2770–2774. doi: 10.1063/1.1670482
|
[8]
|
Gazzillo D, Giacometti A (2004) Analytic solutions for Baxter's model of sticky hard sphere fluids. J Chem Phys 120: 4742–4754. doi: 10.1063/1.1645781
|
[9]
|
Likos CN (2001) Effective interactions in soft condensed matter physics. Phys Rep 348: 267–439. doi: 10.1016/S0370-1573(00)00141-1
|
[10]
|
Anderson VJ, Lekkerkerker HNW (2002) Insights into phase transition kinetics from colloid science. Nature 416: 811–815. doi: 10.1038/416811a
|
[11]
|
Pusey PN, Tough RJA (1985) Particle Interactions, In: Pecora R, Dynamic Light Scattering, Boston: Springer, 85–179.
|
[12]
|
Dhont J (1996) An Introduction to Dynamics of Colloids, Amsterdam: Elsevier.
|
[13]
|
Kegel WK, van Blaaderen A (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287: 290–293. doi: 10.1126/science.287.5451.290
|
[14]
|
Stradner A, Sedgwick H, Cardinaux F, et al. (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432: 492–495. doi: 10.1038/nature03109
|
[15]
|
Belloni L (2000) Colloidal interactions. J Phys-Condens Mat 12: R549–R585. doi: 10.1088/0953-8984/12/46/201
|
[16]
|
Hoye S, Blum L (1977) Solution of the Yukawa Closure of the Ornstein-Zernike Equation. J Stat Phys 16: 399–413. doi: 10.1007/BF01013184
|
[17]
|
Archer AJ, Pini D, Evans R, et al. (2007) Model colloidal fluid with competing interactions: Bulk and interfacial properties. J Chem Phys 126: 014104. doi: 10.1063/1.2405355
|
[18]
|
Costa D, Caccamo C, Bomont JM, et al. (2011) Theoretical description of cluster formation in two-Yukawa competing fluids. Mol Phys 109: 2845–2853. doi: 10.1080/00268976.2011.611480
|
[19]
|
Bomont JM, Bretonnet JL, Costa D, et al. (2012) Thermodynamic signatures of cluster formation in fluids with competing interactions. J Chem Phys 137: 011101. doi: 10.1063/1.4733390
|
[20]
|
Liu Y, Xi Y (2019) Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics. Curr Opin Colloid In 39: 123–136. doi: 10.1016/j.cocis.2019.01.016
|
[21]
|
Lebowitz JL, Penrose O (1966) Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition. J Math Phys 7: 98–113. doi: 10.1063/1.1704821
|
[22]
|
Sciortino F, Tartaglia P, Zaccarelli E (2005) One-Dimensional Cluster Growth and Branching Gels in Colloidal Systems with Short-Range Depletion Attraction and Screened Electrostatic Repulsion. J Phys Chem B 109: 21942–21953 . doi: 10.1021/jp052683g
|
[23]
|
Pini D, Parola A, Reatto L (2006) Freezing and correlations in fluids with competing interactions. J Phys-Condens Mat 18: S2305–S2320. doi: 10.1088/0953-8984/18/36/S06
|
[24]
|
Gast AP, Hall CK, Russel WB (1983) Polymer-induced phase separations in nonaqueous colloidal suspensions. J Colloid Interf Sci 96: 251–267. doi: 10.1016/0021-9797(83)90027-9
|
[25]
|
Hunter RJ (1986) Foundations of Colloid Science, volume I, Oxford University Press.
|
[26]
|
Safran SA, Clark NA (1987) Physics of Complex and Supermolecular Fluids, New York: Wiley Interscience.
|
[27]
|
Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions, Cambridge: Cambridge University Press.
|
[28]
|
Israelachvili JN (2011) Intermolecular and Surface Forces, Amsterdam: Elsevier.
|
[29]
|
Asherie N, Lomakin A, Benedek GB (1999) Phase Diagram of Colloidal Solutions. Phys Rev Lett 77: 4832–4835.
|
[30]
|
Jiang T, Wu J (2009) Cluster formation and bulk phase behavior of colloidal dispersions. Phys Rev E 80: 021401. doi: 10.1103/PhysRevE.80.021401
|
[31]
|
Gao Y, Kilfoil ML (2007) Direct Imaging of Dynamical Heterogeneities near the Colloid-Gel Transition. Phys Rev Lett 99: 078301. doi: 10.1103/PhysRevLett.99.078301
|
[32]
|
Klix CL, Royall CP, Tanaka H (2010) Structural and Dynamical Features of Multiple Metastable Glassy States in a Colloidal System with Competing Interactions. Phys Rev Lett 104: 165702. doi: 10.1103/PhysRevLett.104.165702
|
[33]
|
Campbell AI, Anderson VJ, van Duijneveldt JS, et al. (2005) Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion. Phys Rev Lett 94: 208301. doi: 10.1103/PhysRevLett.94.208301
|
[34]
|
Zaccarelli E, Andreev S, Sciortino F, et al. (2008) Numerical Investigation of Glassy Dynamics in Low-Density Systems. Phys Rev Lett 100: 195701. doi: 10.1103/PhysRevLett.100.195701
|
[35]
|
Wigner E (1938) Effects of the electron interaction on the energy levels of electrons in metals. Trans Faraday Soc 34: 678–685. doi: 10.1039/tf9383400678
|
[36]
|
Porcar L, Falus P, Chen WR, et al. (2010) Formation of the Dynamic Clusters in Concentrated Lysozyme Protein Solutions. J Phys Chem Lett 1: 126–129. doi: 10.1021/jz900127c
|
[37]
|
Liu Y, Porcar L, Chen J, et al. (2011) Lysozyme protein solution with an intermediate range order structure. J Phys Chem B 115: 7238–7247. doi: 10.1021/jp109333c
|
[38]
|
Woo HJ, Carraro C, Chandler D (1995) Quantitative molecular interpretation of mesoscopic correlations in bicontinuous microemulsions. Phys Rev E 52: 6497–6507. doi: 10.1103/PhysRevE.52.6497
|
[39]
|
Kaler EW, Bennett KE, Davis HT, et al. (1983) Toward understanding microemulsion microstructure: A small-angle x-ray scattering study. J Chem Phys 79: 5673–5684. doi: 10.1063/1.445688
|
[40]
|
Kotlarchyk M, Chen SH (1983) Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J Chem Phys 79: 2461–2469. doi: 10.1063/1.446055
|
[41]
|
Schubert KV, Strey R (1991) Small-angle neutron scattering from microemulsions near the disorder line in water/formamide–octane-CiEj systems. J Chem Phys 95: 8532–8545. doi: 10.1063/1.461282
|
[42]
|
Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87: 3195–3200. doi: 10.1063/1.453006
|
[43]
|
Wu S, Westfahl Jr H, Schmalian J, et al. (2018) Theory of Microemulsion Glasses. Available from: https://arxiv.org/pdf/cond-mat/0105308.pdf.
|
[44]
|
Ohta T, Kawasaki K (1986) Equilibrium Morphology of Copolymer Melts. Macromolecules 19: 2621–2632. doi: 10.1021/ma00164a028
|
[45]
|
Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys 87: 697–705. doi: 10.1063/1.453566
|
[46]
|
Thomas EL, Anderson DM, Henkee CS, et al. (1988) Periodic area-minimizing surfaces in block copolymers. Nature 334: 598–601. doi: 10.1038/334598a0
|
[47]
|
Gouy G (1910) Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl (Paris) 9: 457–468. doi: 10.1051/jphystap:019100090045700
|
[48]
|
Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25: 475–481. doi: 10.1080/14786440408634187
|
[49]
|
Debye P (1923) Lowering of freezing point and related phenomena. Phys Z 24: 185–206.
|
[50]
|
Verwey EJW, Overbeek JTG (1948) Theory of the Stability of Lyophobic Colloïds, Amsterdam: Elsevier.
|
[51]
|
Derjaguin BV, Landau L (1941) Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physicochim: USSR 14: 633–662.
|
[52]
|
Denton AR (1999) Effective interactions and volume energies in charge-stabilized colloidal suspensions. J Phys-Condens Mat 11: 10061–10071. doi: 10.1088/0953-8984/11/50/302
|
[53]
|
Canessa E, Grimson MJ, Silbert M (1988) Volume dependent forces in charge stabilized colloidal crystals. Mol Phys 64: 1195–1201. doi: 10.1080/00268978800100803
|
[54]
|
Grimson MJ, Silbert M (1991) A self-consistent theory of the effective interactions in charge-stabilized colloidal dispersions. Mol Phys 74: 397–404. doi: 10.1080/00268979100102311
|
[55]
|
Van Roij R, Hansen JP (1997) Van der Waals-like instability in suspensions of mutually repeling charged colloids. Phys Rev Lett 79: 3082–3085. doi: 10.1103/PhysRevLett.79.3082
|
[56]
|
Ashcroft NW, Stroud D (1978) Theory of the Thermodynamics of Simple Liquid Metals. Solid State Phys 33: 1–81. doi: 10.1016/S0081-1947(08)60468-3
|
[57]
|
Hansen JP, McDonald IR (2006) Theory of Simple Liquids, Academic Press.
|
[58]
|
Baus M, Hansen JP (1980) Statistical mechanics of simple coulomb systems. Phys Rep 59: 1–94. doi: 10.1016/0370-1573(80)90022-8
|
[59]
|
Lebowitz JL, Percus JK (1966) Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids. Phys Rev 144: 251–258. doi: 10.1103/PhysRev.144.251
|
[60]
|
London F (1937) The general theory of molecular forces. Trans Faraday Soc 33: 8–26.
|
[61]
|
Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4: 1058–1072. doi: 10.1016/S0031-8914(37)80203-7
|
[62]
|
Bergstrom L (1997) Hamaker constants of inorganic materials. Adv Colloid Interfac 70: 125–169. doi: 10.1016/S0001-8686(97)00003-1
|
[63]
|
Hongo K, Maezono R (2017) A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy. J Chem Theory Comput 13: 6217–6230.
|
[64]
|
Casimir HBG, Polder D (1948) The Influence of Retardation on the London-van der Waals Forces. Phys Rev 73: 360–372. doi: 10.1103/PhysRev.73.360
|
[65]
|
Milonni PW, Cook RJ, Goggin ME (1988) Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys Rev A 38: 1621–1623. doi: 10.1103/PhysRevA.38.1621
|
[66]
|
Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51: 793–795.
|
[67]
|
Lamoreaux SK (1997) Demonstration of the Casimir Force in the 0.6 to 6 µm Range. Phys Rev Lett 78: 5–8. Lamoreaux SK (1998) Erratum: Demonstration of the Casimir Force in the 0.6 to 6 µm Range [Phys. Rev. Lett. 78, 5 (1997)]. Phys Rev Lett 81: 5475.
|
[68]
|
Ederth T (2000) Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys Rev A 62: 062104.
|
[69]
|
Milton KA (1999) Casimir effect: physical manifestations of zero-point energy. Available from: https://arxiv.org/abs/hep-th/9901011.
|
[70]
|
Lee AA, Hansen JP, Bernard O, et al. (2018) Casimir force in dense confined electrolytes. Mol Phys 116: 3147–3153. doi: 10.1080/00268976.2018.1478137
|
[71]
|
Crocker JC, Grier DG (1996) When Like Charges Attract: The Effects of Geometrical Confinement on Long-Range Colloidal Interactions. Phys Rev Lett 77: 1897–1900. doi: 10.1103/PhysRevLett.77.1897
|
[72]
|
Van Roij R, Dijkstra M, Hansen JP (1999) Phase diagram of charge-stabilized colloidal suspensions: van der Waals instability without attractive forces. Phys Rev E 59: 2010–2025. doi: 10.1103/PhysRevE.59.2010
|
[73]
|
Daoud M, Cotton JP (1982) Star shaped polymers: a model for the conformation and its concentration dependence. J Phys France 43: 531–538. doi: 10.1051/jphys:01982004303053100
|
[74]
|
Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33: 183–192. doi: 10.1002/pol.1958.1203312618
|
[75]
|
Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24: 2912–2919. doi: 10.1021/ma00010a043
|
[76]
|
Watzlawek M, Likos CN, Löwen H (1999) Phase diagram of Star Polymer solutions. Phys Rev Lett 82: 5289–5293. doi: 10.1103/PhysRevLett.82.5289
|
[77]
|
Girifalco LA (1992) Molecular properties of fullerene in the gas and solid phases. J Phys Chem 96: 858–861. doi: 10.1021/j100181a061
|
[78]
|
Sciortino F, Mossa S, Zaccarelli E, et al. (2004) Equilibrium Cluster Phases and Low-Density Arrested Disordered States: The Role of Short-Range Attraction and Long-Range Repulsion. Phys Rev Lett 93: 055701. doi: 10.1103/PhysRevLett.93.055701
|
[79]
|
Malescio G (2007) Complex phase behaviour from simple potentials. J Phys-Condens Mat 19: 073101. doi: 10.1088/0953-8984/19/7/073101
|
[80]
|
Sanz E, White KA, Clegg PS, et al. (2009) Colloidal Gels Assembled via a Temporary Interfacial Scaffold. Phys Rev Lett 103: 255502. doi: 10.1103/PhysRevLett.103.255502
|
[81]
|
Cigala G, Costa D, Bomont JM, et al. (2015) Aggregate formation in a model fluid with microscopic piecewise-continous competing interactions. Mol Phys 113: 2583–2592. doi: 10.1080/00268976.2015.1078006
|
[82]
|
Zhuang Y, Zhang K, Charbonneau P (2016) Equilibrium Phase Behavior of a Continuous-Space Microphase Former. Phys Rev Lett 116: 098301. doi: 10.1103/PhysRevLett.116.098301
|
[83]
|
Huan Z, Charbonneau P (2016) Equilibrium phase behavior of the square-well linear microphase-forming model. J Phys Chem 120: 6178–6188. doi: 10.1021/acs.jpcb.6b02167
|
[84]
|
Haw MD (2010) Growth kinetics of colloidal chains and labyrinths. Phys Rev E 81: 031402.
|
[85]
|
Loredo-Osti A, Castaneda-Priego R (2012) Analytic Structure Factor of Discrete Potential Fluids: Cluster-Like Correlations and Micro-Phases. J Nanofluids 1: 36–43. doi: 10.1166/jon.2012.1013
|
[86]
|
Baumketner A, Stelmakh A, Cai W (2018) Cluster Crystals Stabilized by Hydrophobic and Electrostatic Interactions. J Phys Chem B 122: 2669–2682. doi: 10.1021/acs.jpcb.7b11662
|
[87]
|
Sear RP, Gelbart WM (1999) Microphase separation versus the vapor-liquid transition in systems of spherical particles. J Chem Phys 110: 4582–4588. doi: 10.1063/1.478338
|
[88]
|
Archer AJ (2008) Two-dimensional fluid with competing interactions exhibiting microphase separation: Theory for bulk and interfacial properties. Phys Rev E 78: 031402. doi: 10.1103/PhysRevE.78.031402
|
[89]
|
Bomont JM, Costa D (2012) A theoretical study of structure and thermodynamics of fluids with long-range competing interactions exhibiting pattern formation. J Chem Phys 137: 164901. doi: 10.1063/1.4759503
|
[90]
|
Pini D, Jialin G, Parola A, et al. (2000) Enhanced density fluctuations in fluid systems with competing interactions. Chem Phys Lett 327: 209–215. doi: 10.1016/S0009-2614(00)00763-6
|
[91]
|
Archer AJ, Wilding NB (2007) Phase behavior of a fluid with competing attractive and repulsive interactions. Phys Rev E 76: 031501. doi: 10.1103/PhysRevE.76.031501
|
[92]
|
Bomont JM, Bretonnet JL, Costa D (2010) Temperature study of cluster formation in two-Yukawa fluids. J Chem Phys 132: 184508. doi: 10.1063/1.3418609
|
[93]
|
Archer AJ, Ionescu C, Pini D, et al. (2008) Theory for the phase behaviour of a colloidal fluid with competing interactions. J Phys-Condens Mat 20: 415106–415117. doi: 10.1088/0953-8984/20/41/415106
|
[94]
|
Toledano JCF, Sciortino F, Zaccarelli E (2009) Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter 5: 2390–2398. doi: 10.1039/b818169a
|
[95]
|
Santos AP, Pekalski J, Panagiotopoulos AZ (2017) Thermodynamic signatures and cluster properties of self-assembly in systems with competing interactions. Soft Matter 13: 8055–8063. doi: 10.1039/C7SM01721A
|
[96]
|
Mani E, Lechner W, Kegel WK, et al. (2014) Equilibrium and non-equilibrium cluster phases in colloids with competing interactions. Soft Matter 10: 4479–4486. doi: 10.1039/C3SM53058B
|
[97]
|
Das S, Riest J, Winkler RG, et al. (2018) Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. Soft Matter 14: 92–103. doi: 10.1039/C7SM02019H
|
[98]
|
De Candia A, Del Gado E, Fierro A, et al. (2006) Columnar and lamellar phases in attractive colloidal systems. Phys Rev E 74: 010403(R).
|
[99]
|
Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon Press.
|
[100]
|
Landau LD, Ginzburg VL (1950) On the Theory of Superconductivity. Zh Eksp Teor Fiz 20: 1064–1082. [English translation: Ter Haar D (1965) Men of Physics: LD Landau, London: Pergamon, 138–167.]
|
[101]
|
Fisher ME (1964) Correlation Functions and the Critical Region of Simple Fluids. J Math Phys 5: 944–962. doi: 10.1063/1.1704197
|
[102]
|
Gompper G, Schick M (1990) Correlation between structural and interfacial properties of amphiphilic systems. Phys Rev Lett 65: 1116–1120. doi: 10.1103/PhysRevLett.65.1116
|
[103]
|
Fredickson GH, Milner ST (1991) Thermodynamics of Random Copolymer Melts. Phys Rev Lett 67: 835–838. doi: 10.1103/PhysRevLett.67.835
|
[104]
|
Holyst R, Schick M (1992) Copolymers as amphiphiles in ternary mixtures: An analysis employing disorder, equimaxima, and Lifshitz lines. J Chem Phys 96: 7728–7737. doi: 10.1063/1.462372
|
[105]
|
Hornreich RM, Luban M, Shtrikman S (1975) Critical Behavior at the Onset of k-Space Instability on the λ Line. Phys Rev Lett 35: 1678–1681. doi: 10.1103/PhysRevLett.35.1678
|
[106]
|
Chen J, Lubensky TC (1976) Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys Rev A 14: 1202–1207. doi: 10.1103/PhysRevA.14.1202
|
[107]
|
Bates FS, Maurer W, Lodge TP, et al. (1995) Isotropic Lifshitz Behavior in Block Copolymer-Homopolymer Blends. Phys Rev Lett 75: 4429–4432. doi: 10.1103/PhysRevLett.75.4429
|
[108]
|
Schwahn D, Mortensen K, Frielinghaus H, et al. (1999) Crossover from 3D Ising to Isotropic Lifshitz Critical Behavior in a Mixtureof a Homopolymer Blend and Diblock Copolymer. Phys Rev Lett 82: 5056–5059. doi: 10.1103/PhysRevLett.82.5056
|
[109]
|
Pipich V, Schwahn D, Willner L (2005) Ginzburg Number of a Homopolymer–Diblock Copolymer Mixture Covering the 3D-Ising, Isotropic Lifshitz, and Brasovski Classes of Critical Universality. Phys Rev Lett 94: 117801. doi: 10.1103/PhysRevLett.94.117801
|
[110]
|
Kielhorn L, Muthukumar M (1997) Fluctuation theory of diblock copolymer/homopolymer blends and its effects on the Lifshitz point. J Chem Phys 107: 5588–5608. doi: 10.1063/1.474235
|
[111]
|
Wertheim MS (1963) Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys Rev Lett 10: 321–325. doi: 10.1103/PhysRevLett.10.321
|
[112]
|
Thiele E (1963) Equation of State for Hard Spheres. J Chem Phys 39: 474–479. doi: 10.1063/1.1734272
|
[113]
|
Bretonnet JL, Regnaut C (1985) Determination of the structure factor of simple liquid metals from the pseudopotential theory and optimized random-phase approximation: Application to Al and Ga. Phys Rev B 31: 5071–5085. doi: 10.1103/PhysRevB.31.5071
|
[114]
|
Waisman E (1973) The radial distribution function for a fluid of hard spheres at high densities. Mol Phys 25: 45–48. doi: 10.1080/00268977300100061
|
[115]
|
Bretonnet JL, Bomont JM, Costa D (2018) A semianalytical "reverse" approach to link structure and microscopic interactions in two-Yukawa competing fluids. J Chem Phys 149: 234907. doi: 10.1063/1.5047448
|
[116]
|
Muratov CB (2002) Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys Rev E 66: 066108. doi: 10.1103/PhysRevE.66.066108
|
[117]
|
Ciach A (2008) Universal sequence of ordered structures obtained from mesoscopic description of self-assembly. Phys Rev E 78: 061505. doi: 10.1103/PhysRevE.78.061505
|
[118]
|
Fredrickson GH (1986) Nonequilibrium structure of the homogeneous phase of block copolymers under steady flow. J Chem Phys 85: 5306–5313. doi: 10.1063/1.451673
|
[119]
|
Gompper G, Schick M (1990) Lattice model of microemulsions. Phys Rev B 41: 9148–9162. doi: 10.1103/PhysRevB.41.9148
|
[120]
|
Sweatman MB, Fartaria R, Lue L (2014) Cluster formation in fluids with competing short-range and long-range interactions. J Chem Phys 140: 124508. doi: 10.1063/1.4869109
|
[121]
|
Bomont JM, Costa D, Bretonnet JL (2017) Tiny changes in local order identify the cluster formation threshold in model fluids with competing interactions. Phys Chem Chem Phys 19: 15247–15255. doi: 10.1039/C7CP01811H
|
[122]
|
Godfrin PD, Castaneda-Priego R, Liu Y, et al. (2013) Intermediate range order and structure in colloidal disoersions with competing interactions. J Chem Phys 139: 154904. doi: 10.1063/1.4824487
|
[123]
|
Jadrich RB, Bollinger JA, Johnson KP, et al. (2015) Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions. Phys Rev E 91: 042312.
|
[124]
|
Jagla EA (1999) Core-softened potentials and the anomalous properties of water. J Chem Phys 111: 8980–8986. doi: 10.1063/1.480241
|
[125]
|
Gibson HM, Wilding NB (2006) Metastable liquid-liquid coexistence and density anomalies in a core-softened fluid. Phys Rev E 73: 061507. doi: 10.1103/PhysRevE.73.061507
|
[126]
|
Lo Verso F, Yelash L, Egorov AS, et al. (2011) Interactions between polymer brush-coated spherical nanoparticles: The good solvent case. J Chem Phys 135: 214902. doi: 10.1063/1.3663964
|
[127]
|
Gupta S, Camargo M, Stellbrink J, et al. (2015) Dynamic phase diagram of soft nanocolloids. Nanoscale 7: 13924–13934. doi: 10.1039/C5NR03702F
|
[128]
|
Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402: 393–395. doi: 10.1038/46509
|
[129]
|
Meng F, Ugaz VM (2015) Instantaneous physico-chemical analysis of suspension-based nanomaterials. Sci Rep 5: 9896. doi: 10.1038/srep09896
|
[130]
|
Gebauer D, Völkel A, Cölfen H (2009) Stable Prenucleation Calcium Carbonate Clusters. Science 322: 1819–1822.
|