Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Competing interactions in colloidal suspensions

Université de Lorraine, LCP-A2MC, EA3469, 1 Bd. François Arago, Metz F-57078, France

Topical Section: Theory, simulations and modeling of materials

The purpose of colloid science is to understand the underlying mechanisms involved in the formation of ordered arrangements of particles, and to observe the self-assembly process in systems of components larger than molecules. A major focus of colloid science has been on understanding the forces between colloidal particles suspended in a fluid. For a long time, the main obstacle to verifying theories of colloidal forces has been the lack of experimental methods capable of directly measuring the forces between colloidal particles separated by a gap of few nanometers. Recently, advances have been made with new imaging techniques revealing some of the secrets of the spontaneous formation of pattern in homogeneous fluids. During the same time, models of interactions have been developed and tested on macroscopic observations of suspensions after changing their composition. It is clear that a general theory for the forces may not be suitable for all systems, as their characteristics are highly dependent on chemistry and the microscopic environment. In colloidal suspensions, it is now well established that an attractive interaction at distances slightly larger than the particle size is dominated by a repulsive contribution at larger distances. The competition between attraction and repulsion forces is responsible for the appearance of stable clusters of generic aggregation numbers. This paper is intended to provide (i) evidence of the confidence of potential models with competing attractive and repulsive interactions and (ii) appropriate tools for finding intriguing phenomena in the generation of nanostructures.
  Article Metrics

Keywords colloidal suspensions; microemulsions; diblock copolymers; density fluctuations; static structures

Citation: Jean-Louis Bretonnet. Competing interactions in colloidal suspensions. AIMS Materials Science, 2019, 6(4): 509-548. doi: 10.3934/matersci.2019.4.509


  • 1. Gast AP, Russel WB (1998) Simple Ordering in Complex Fluids. Phys Today 51: 24–30.
  • 2. Hall N (2000) The New Chemistry, Cambridge University Press.
  • 3. Evans DF, Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, New York: Wiley.
  • 4. Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J Phys-Condens Mat 16: S4877–S4886.    
  • 5. Seul M, Andelman D (1995) Domain Shapes and Patterns: The Phenomenology of Modulated Phases. Science 267: 476–483.    
  • 6. Whitesides GM, Boncheva M (2002) Beyond molecules: Self-assembly of mesoscopic and macroscopic components. P Natl Acad Sci USA 99: 4769–4774.    
  • 7. Baxter RJ (1968) Percus-Yevick Equation for Hard Spheres with Surface Adhesion. J Chem Phys 49: 2770–2774.    
  • 8. Gazzillo D, Giacometti A (2004) Analytic solutions for Baxter's model of sticky hard sphere fluids. J Chem Phys 120: 4742–4754.    
  • 9. Likos CN (2001) Effective interactions in soft condensed matter physics. Phys Rep 348: 267–439.    
  • 10. Anderson VJ, Lekkerkerker HNW (2002) Insights into phase transition kinetics from colloid science. Nature 416: 811–815.    
  • 11. Pusey PN, Tough RJA (1985) Particle Interactions, In: Pecora R, Dynamic Light Scattering, Boston: Springer, 85–179.
  • 12. Dhont J (1996) An Introduction to Dynamics of Colloids, Amsterdam: Elsevier.
  • 13. Kegel WK, van Blaaderen A (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287: 290–293.    
  • 14. Stradner A, Sedgwick H, Cardinaux F, et al. (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432: 492–495.    
  • 15. Belloni L (2000) Colloidal interactions. J Phys-Condens Mat 12: R549–R585.    
  • 16. Hoye S, Blum L (1977) Solution of the Yukawa Closure of the Ornstein-Zernike Equation. J Stat Phys 16: 399–413.    
  • 17. Archer AJ, Pini D, Evans R, et al. (2007) Model colloidal fluid with competing interactions: Bulk and interfacial properties. J Chem Phys 126: 014104.    
  • 18. Costa D, Caccamo C, Bomont JM, et al. (2011) Theoretical description of cluster formation in two-Yukawa competing fluids. Mol Phys 109: 2845–2853.    
  • 19. Bomont JM, Bretonnet JL, Costa D, et al. (2012) Thermodynamic signatures of cluster formation in fluids with competing interactions. J Chem Phys 137: 011101.    
  • 20. Liu Y, Xi Y (2019) Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics. Curr Opin Colloid In 39: 123–136.    
  • 21. Lebowitz JL, Penrose O (1966) Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition. J Math Phys 7: 98–113.    
  • 22. Sciortino F, Tartaglia P, Zaccarelli E (2005) One-Dimensional Cluster Growth and Branching Gels in Colloidal Systems with Short-Range Depletion Attraction and Screened Electrostatic Repulsion. J Phys Chem B 109: 21942–21953 .    
  • 23. Pini D, Parola A, Reatto L (2006) Freezing and correlations in fluids with competing interactions. J Phys-Condens Mat 18: S2305–S2320.    
  • 24. Gast AP, Hall CK, Russel WB (1983) Polymer-induced phase separations in nonaqueous colloidal suspensions. J Colloid Interf Sci 96: 251–267.    
  • 25. Hunter RJ (1986) Foundations of Colloid Science, volume I, Oxford University Press.
  • 26. Safran SA, Clark NA (1987) Physics of Complex and Supermolecular Fluids, New York: Wiley Interscience.
  • 27. Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions, Cambridge: Cambridge University Press.
  • 28. Israelachvili JN (2011) Intermolecular and Surface Forces, Amsterdam: Elsevier.
  • 29. Asherie N, Lomakin A, Benedek GB (1999) Phase Diagram of Colloidal Solutions. Phys Rev Lett 77: 4832–4835.
  • 30. Jiang T, Wu J (2009) Cluster formation and bulk phase behavior of colloidal dispersions. Phys Rev E 80: 021401.    
  • 31. Gao Y, Kilfoil ML (2007) Direct Imaging of Dynamical Heterogeneities near the Colloid-Gel Transition. Phys Rev Lett 99: 078301.    
  • 32. Klix CL, Royall CP, Tanaka H (2010) Structural and Dynamical Features of Multiple Metastable Glassy States in a Colloidal System with Competing Interactions. Phys Rev Lett 104: 165702.    
  • 33. Campbell AI, Anderson VJ, van Duijneveldt JS, et al. (2005) Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion. Phys Rev Lett 94: 208301.    
  • 34. Zaccarelli E, Andreev S, Sciortino F, et al. (2008) Numerical Investigation of Glassy Dynamics in Low-Density Systems. Phys Rev Lett 100: 195701.    
  • 35. Wigner E (1938) Effects of the electron interaction on the energy levels of electrons in metals. Trans Faraday Soc 34: 678–685.    
  • 36. Porcar L, Falus P, Chen WR, et al. (2010) Formation of the Dynamic Clusters in Concentrated Lysozyme Protein Solutions. J Phys Chem Lett 1: 126–129.    
  • 37. Liu Y, Porcar L, Chen J, et al. (2011) Lysozyme protein solution with an intermediate range order structure. J Phys Chem B 115: 7238–7247.    
  • 38. Woo HJ, Carraro C, Chandler D (1995) Quantitative molecular interpretation of mesoscopic correlations in bicontinuous microemulsions. Phys Rev E 52: 6497–6507.    
  • 39. Kaler EW, Bennett KE, Davis HT, et al. (1983) Toward understanding microemulsion microstructure: A small-angle x-ray scattering study. J Chem Phys 79: 5673–5684.    
  • 40. Kotlarchyk M, Chen SH (1983) Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J Chem Phys 79: 2461–2469.    
  • 41. Schubert KV, Strey R (1991) Small-angle neutron scattering from microemulsions near the disorder line in water/formamide–octane-CiEj systems. J Chem Phys 95: 8532–8545.    
  • 42. Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87: 3195–3200.    
  • 43. Wu S, Westfahl Jr H, Schmalian J, et al. (2018) Theory of Microemulsion Glasses. Available from: https://arxiv.org/pdf/cond-mat/0105308.pdf.
  • 44. Ohta T, Kawasaki K (1986) Equilibrium Morphology of Copolymer Melts. Macromolecules 19: 2621–2632.    
  • 45. Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys 87: 697–705.    
  • 46. Thomas EL, Anderson DM, Henkee CS, et al. (1988) Periodic area-minimizing surfaces in block copolymers. Nature 334: 598–601.    
  • 47. Gouy G (1910) Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl (Paris) 9: 457–468.    
  • 48. Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25: 475–481.    
  • 49. Debye P (1923) Lowering of freezing point and related phenomena. Phys Z 24: 185–206.
  • 50. Verwey EJW, Overbeek JTG (1948) Theory of the Stability of Lyophobic Colloïds, Amsterdam: Elsevier.
  • 51. Derjaguin BV, Landau L (1941) Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physicochim: USSR 14: 633–662.
  • 52. Denton AR (1999) Effective interactions and volume energies in charge-stabilized colloidal suspensions. J Phys-Condens Mat 11: 10061–10071.    
  • 53. Canessa E, Grimson MJ, Silbert M (1988) Volume dependent forces in charge stabilized colloidal crystals. Mol Phys 64: 1195–1201.    
  • 54. Grimson MJ, Silbert M (1991) A self-consistent theory of the effective interactions in charge-stabilized colloidal dispersions. Mol Phys 74: 397–404.    
  • 55. Van Roij R, Hansen JP (1997) Van der Waals-like instability in suspensions of mutually repeling charged colloids. Phys Rev Lett 79: 3082–3085.    
  • 56. Ashcroft NW, Stroud D (1978) Theory of the Thermodynamics of Simple Liquid Metals. Solid State Phys 33: 1–81.    
  • 57. Hansen JP, McDonald IR (2006) Theory of Simple Liquids, Academic Press.
  • 58. Baus M, Hansen JP (1980) Statistical mechanics of simple coulomb systems. Phys Rep 59: 1–94.    
  • 59. Lebowitz JL, Percus JK (1966) Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids. Phys Rev 144: 251–258.    
  • 60. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33: 8–26.
  • 61. Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4: 1058–1072.    
  • 62. Bergstrom L (1997) Hamaker constants of inorganic materials. Adv Colloid Interfac 70: 125–169.    
  • 63. Hongo K, Maezono R (2017) A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy. J Chem Theory Comput 13: 6217–6230.
  • 64. Casimir HBG, Polder D (1948) The Influence of Retardation on the London-van der Waals Forces. Phys Rev 73: 360–372.    
  • 65. Milonni PW, Cook RJ, Goggin ME (1988) Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys Rev A 38: 1621–1623.    
  • 66. Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51: 793–795.
  • 67. Lamoreaux SK (1997) Demonstration of the Casimir Force in the 0.6 to 6 µm Range. Phys Rev Lett 78: 5–8. Lamoreaux SK (1998) Erratum: Demonstration of the Casimir Force in the 0.6 to 6 µm Range [Phys. Rev. Lett. 78, 5 (1997)]. Phys Rev Lett 81: 5475.
  • 68. Ederth T (2000) Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys Rev A 62: 062104.
  • 69. Milton KA (1999) Casimir effect: physical manifestations of zero-point energy. Available from: https://arxiv.org/abs/hep-th/9901011.
  • 70. Lee AA, Hansen JP, Bernard O, et al. (2018) Casimir force in dense confined electrolytes. Mol Phys 116: 3147–3153.    
  • 71. Crocker JC, Grier DG (1996) When Like Charges Attract: The Effects of Geometrical Confinement on Long-Range Colloidal Interactions. Phys Rev Lett 77: 1897–1900.    
  • 72. Van Roij R, Dijkstra M, Hansen JP (1999) Phase diagram of charge-stabilized colloidal suspensions: van der Waals instability without attractive forces. Phys Rev E 59: 2010–2025.    
  • 73. Daoud M, Cotton JP (1982) Star shaped polymers: a model for the conformation and its concentration dependence. J Phys France 43: 531–538.    
  • 74. Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33: 183–192.    
  • 75. Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24: 2912–2919.    
  • 76. Watzlawek M, Likos CN, Löwen H (1999) Phase diagram of Star Polymer solutions. Phys Rev Lett 82: 5289–5293.    
  • 77. Girifalco LA (1992) Molecular properties of fullerene in the gas and solid phases. J Phys Chem 96: 858–861.    
  • 78. Sciortino F, Mossa S, Zaccarelli E, et al. (2004) Equilibrium Cluster Phases and Low-Density Arrested Disordered States: The Role of Short-Range Attraction and Long-Range Repulsion. Phys Rev Lett 93: 055701.    
  • 79. Malescio G (2007) Complex phase behaviour from simple potentials. J Phys-Condens Mat 19: 073101.    
  • 80. Sanz E, White KA, Clegg PS, et al. (2009) Colloidal Gels Assembled via a Temporary Interfacial Scaffold. Phys Rev Lett 103: 255502.    
  • 81. Cigala G, Costa D, Bomont JM, et al. (2015) Aggregate formation in a model fluid with microscopic piecewise-continous competing interactions. Mol Phys 113: 2583–2592.    
  • 82. Zhuang Y, Zhang K, Charbonneau P (2016) Equilibrium Phase Behavior of a Continuous-Space Microphase Former. Phys Rev Lett 116: 098301.    
  • 83. Huan Z, Charbonneau P (2016) Equilibrium phase behavior of the square-well linear microphase-forming model. J Phys Chem 120: 6178–6188.    
  • 84. Haw MD (2010) Growth kinetics of colloidal chains and labyrinths. Phys Rev E 81: 031402.
  • 85. Loredo-Osti A, Castaneda-Priego R (2012) Analytic Structure Factor of Discrete Potential Fluids: Cluster-Like Correlations and Micro-Phases. J Nanofluids 1: 36–43.    
  • 86. Baumketner A, Stelmakh A, Cai W (2018) Cluster Crystals Stabilized by Hydrophobic and Electrostatic Interactions. J Phys Chem B 122: 2669–2682.    
  • 87. Sear RP, Gelbart WM (1999) Microphase separation versus the vapor-liquid transition in systems of spherical particles. J Chem Phys 110: 4582–4588.    
  • 88. Archer AJ (2008) Two-dimensional fluid with competing interactions exhibiting microphase separation: Theory for bulk and interfacial properties. Phys Rev E 78: 031402.    
  • 89. Bomont JM, Costa D (2012) A theoretical study of structure and thermodynamics of fluids with long-range competing interactions exhibiting pattern formation. J Chem Phys 137: 164901.    
  • 90. Pini D, Jialin G, Parola A, et al. (2000) Enhanced density fluctuations in fluid systems with competing interactions. Chem Phys Lett 327: 209–215.    
  • 91. Archer AJ, Wilding NB (2007) Phase behavior of a fluid with competing attractive and repulsive interactions. Phys Rev E 76: 031501.    
  • 92. Bomont JM, Bretonnet JL, Costa D (2010) Temperature study of cluster formation in two-Yukawa fluids. J Chem Phys 132: 184508.    
  • 93. Archer AJ, Ionescu C, Pini D, et al. (2008) Theory for the phase behaviour of a colloidal fluid with competing interactions. J Phys-Condens Mat 20: 415106–415117.    
  • 94. Toledano JCF, Sciortino F, Zaccarelli E (2009) Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter 5: 2390–2398.    
  • 95. Santos AP, Pekalski J, Panagiotopoulos AZ (2017) Thermodynamic signatures and cluster properties of self-assembly in systems with competing interactions. Soft Matter 13: 8055–8063.    
  • 96. Mani E, Lechner W, Kegel WK, et al. (2014) Equilibrium and non-equilibrium cluster phases in colloids with competing interactions. Soft Matter 10: 4479–4486.    
  • 97. Das S, Riest J, Winkler RG, et al. (2018) Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. Soft Matter 14: 92–103.    
  • 98. De Candia A, Del Gado E, Fierro A, et al. (2006) Columnar and lamellar phases in attractive colloidal systems. Phys Rev E 74: 010403(R).
  • 99. Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon Press.
  • 100. Landau LD, Ginzburg VL (1950) On the Theory of Superconductivity. Zh Eksp Teor Fiz 20: 1064–1082. [English translation: Ter Haar D (1965) Men of Physics: LD Landau, London: Pergamon, 138–167.]
  • 101. Fisher ME (1964) Correlation Functions and the Critical Region of Simple Fluids. J Math Phys 5: 944–962.    
  • 102. Gompper G, Schick M (1990) Correlation between structural and interfacial properties of amphiphilic systems. Phys Rev Lett 65: 1116–1120.    
  • 103. Fredickson GH, Milner ST (1991) Thermodynamics of Random Copolymer Melts. Phys Rev Lett 67: 835–838.    
  • 104. Holyst R, Schick M (1992) Copolymers as amphiphiles in ternary mixtures: An analysis employing disorder, equimaxima, and Lifshitz lines. J Chem Phys 96: 7728–7737.    
  • 105. Hornreich RM, Luban M, Shtrikman S (1975) Critical Behavior at the Onset of k-Space Instability on the λ Line. Phys Rev Lett 35: 1678–1681.    
  • 106. Chen J, Lubensky TC (1976) Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys Rev A 14: 1202–1207.    
  • 107. Bates FS, Maurer W, Lodge TP, et al. (1995) Isotropic Lifshitz Behavior in Block Copolymer-Homopolymer Blends. Phys Rev Lett 75: 4429–4432.    
  • 108. Schwahn D, Mortensen K, Frielinghaus H, et al. (1999) Crossover from 3D Ising to Isotropic Lifshitz Critical Behavior in a Mixtureof a Homopolymer Blend and Diblock Copolymer. Phys Rev Lett 82: 5056–5059.    
  • 109. Pipich V, Schwahn D, Willner L (2005) Ginzburg Number of a Homopolymer–Diblock Copolymer Mixture Covering the 3D-Ising, Isotropic Lifshitz, and Brasovski Classes of Critical Universality. Phys Rev Lett 94: 117801.    
  • 110. Kielhorn L, Muthukumar M (1997) Fluctuation theory of diblock copolymer/homopolymer blends and its effects on the Lifshitz point. J Chem Phys 107: 5588–5608.    
  • 111. Wertheim MS (1963) Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys Rev Lett 10: 321–325.    
  • 112. Thiele E (1963) Equation of State for Hard Spheres. J Chem Phys 39: 474–479.    
  • 113. Bretonnet JL, Regnaut C (1985) Determination of the structure factor of simple liquid metals from the pseudopotential theory and optimized random-phase approximation: Application to Al and Ga. Phys Rev B 31: 5071–5085.    
  • 114. Waisman E (1973) The radial distribution function for a fluid of hard spheres at high densities. Mol Phys 25: 45–48.    
  • 115. Bretonnet JL, Bomont JM, Costa D (2018) A semianalytical "reverse" approach to link structure and microscopic interactions in two-Yukawa competing fluids. J Chem Phys 149: 234907.    
  • 116. Muratov CB (2002) Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys Rev E 66: 066108.    
  • 117. Ciach A (2008) Universal sequence of ordered structures obtained from mesoscopic description of self-assembly. Phys Rev E 78: 061505.    
  • 118. Fredrickson GH (1986) Nonequilibrium structure of the homogeneous phase of block copolymers under steady flow. J Chem Phys 85: 5306–5313.    
  • 119. Gompper G, Schick M (1990) Lattice model of microemulsions. Phys Rev B 41: 9148–9162.    
  • 120. Sweatman MB, Fartaria R, Lue L (2014) Cluster formation in fluids with competing short-range and long-range interactions. J Chem Phys 140: 124508.    
  • 121. Bomont JM, Costa D, Bretonnet JL (2017) Tiny changes in local order identify the cluster formation threshold in model fluids with competing interactions. Phys Chem Chem Phys 19: 15247–15255.    
  • 122. Godfrin PD, Castaneda-Priego R, Liu Y, et al. (2013) Intermediate range order and structure in colloidal disoersions with competing interactions. J Chem Phys 139: 154904.    
  • 123. Jadrich RB, Bollinger JA, Johnson KP, et al. (2015) Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions. Phys Rev E 91: 042312.
  • 124. Jagla EA (1999) Core-softened potentials and the anomalous properties of water. J Chem Phys 111: 8980–8986.    
  • 125. Gibson HM, Wilding NB (2006) Metastable liquid-liquid coexistence and density anomalies in a core-softened fluid. Phys Rev E 73: 061507.    
  • 126. Lo Verso F, Yelash L, Egorov AS, et al. (2011) Interactions between polymer brush-coated spherical nanoparticles: The good solvent case. J Chem Phys 135: 214902.    
  • 127. Gupta S, Camargo M, Stellbrink J, et al. (2015) Dynamic phase diagram of soft nanocolloids. Nanoscale 7: 13924–13934.    
  • 128. Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402: 393–395.    
  • 129. Meng F, Ugaz VM (2015) Instantaneous physico-chemical analysis of suspension-based nanomaterials. Sci Rep 5: 9896.    
  • 130. Gebauer D, Völkel A, Cölfen H (2009) Stable Prenucleation Calcium Carbonate Clusters. Science 322: 1819–1822.


This article has been cited by

  • 1. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Local order and cluster formation in model fluids with competing interactions: a simulation and theoretical study, Physical Chemistry Chemical Physics, 2020, 10.1039/C9CP06710H
  • 2. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study, AIMS Materials Science, 2020, 7, 2, 170, 10.3934/matersci.2020.2.170

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved