Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamic propagation of a macrocrack interacting with parallel small cracks

Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, United Kingdom

Special Issues: Interaction of Multiple Cracks in Materials -Volume 1

In this study, the effect of small cracks on the dynamic propagation of a macrocrack is investigated by using a new continuum mechanics formulation, peridynamics. Various combinations of small cracks with different number, location and density are considered. Depending on the location, density and number of small cracks, the propagation speed of macrocrack differs. Some combinations of small cracks slows down the propagation of a macrocrack by 34%. Presented results show that this analysis can be useful for the design of new microstructurally toughened materials.
  Figure/Table
  Supplementary
  Article Metrics

Keywords macrocrack; small crack; dynamic propagation; peridynamics; numerical

Citation: Bozo Vazic, Hanlin Wang, Cagan Diyaroglu, Selda Oterkus, Erkan Oterkus. Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Materials Science, 2017, 4(1): 118-136. doi: 10.3934/matersci.2017.1.118

References

  • 1. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6: 773–781.    
  • 2. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42: 1397–1434.    
  • 3. Skumar N, Moes N, Moran B, et al. (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Meth Eng 48: 1549–1570.
  • 4. Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69: 813–833.    
  • 5. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162: 229–244.    
  • 6. Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87: 253–265.    
  • 7. Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Method Appl M 196: 2777–2799.    
  • 8. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61: 2316–2343.    
  • 9. Griffths DV, Mustoe GGW (2001) Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int J Numer Meth Eng 50: 1759–1775.    
  • 10. Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71: 094106.    
  • 11. O’Brien GS, Bean CJ (2011) An irregular lattice method for elastic wave propagation. Geophys J Int 187: 1699–1707.    
  • 12. Pazdniakou A, Adler PM (2012) Lattice spring models. Transport Porous Med 93: 243–262.    
  • 13. Morrison CN, Zhang M, Liu D, et al. (2015) Site-bond lattice modelling of damage process in nuclear graphite under bending Transactions, SMiRT-23 Manchester, United Kingdom.
  • 14. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209.    
  • 15. Silling SA, Askari A (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83: 1526–1535.    
  • 16. Silling SA, Epton M, Weckner O, et al. (2007) Peridynamics states and constitutive modeling. J Elasticity 88: 151–184.    
  • 17. Diyaroglu C, Oterkus E, Oterkus S, et al. (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69: 152–168.
  • 18. Oterkus S, Madenci E (2015) Peridynamics for antiplane shear and torsional deformations. J Mech Mater Struct 10: 167–193.    
  • 19. Perre P, Almeida G, Ayouz M, et al. (2016) New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Ann Forest Sci 73: 147–162.    
  • 20. Oterkus E, Madenci E (2012) Peridynamics for failure prediction in composites. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii.
  • 21. Oterkus E, Barut A, Madenci E (2010) Damage Growth Prediction from Loaded Composite Fastener Holes by Using Peridynamic Theory. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida.
  • 22. Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications, Springer, New York.
  • 23. Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mec 53: 194–204.    
  • 24. Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76: 1563–1573.    
  • 25. Wang H, Liu Z, Xu D, et al. (2016) Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks. Int J Damage Mech 25: 4–25.    
  • 26. Rubinstein AA (1985) Macrocrack interaction with semi-infinite microcrack array. Int J Fract 27: 113–119.

 

This article has been cited by

  • 1. Hanlin Wang, Erkan Oterkus, Selda Oterkus, Peridynamic modelling of fracture in marine lithium-ion batteries, Ocean Engineering, 2018, 151, 257, 10.1016/j.oceaneng.2018.01.049
  • 2. Yan Gao, Selda Oterkus, Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems, Continuum Mechanics and Thermodynamics, 2018, 10.1007/s00161-018-0691-1
  • 3. Yan Gao, Selda Oterkus, Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory, Composite Structures, 2019, 207, 397, 10.1016/j.compstruct.2018.09.034
  • 4. Xuefeng Liu, Xiaoqiao He, Jinbao Wang, Ligang Sun, Erkan Oterkus, An ordinary state-based peridynamic model for the fracture of zigzag graphene sheets, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2018, 474, 2217, 20180019, 10.1098/rspa.2018.0019

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Selda Oterkus, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved