Citation: M.C. Raghucharan, Surendra Nadh Somala. Stochastic Extended Simulation (EXSIM) of Mw 7.0 Kumamoto-Shi earthquake on 15 April 2016 in the Southwest of Japan using the SCEC Broadband Platform (BBP)[J]. AIMS Geosciences, 2018, 4(2): 144-165. doi: 10.3934/geosci.2018.2.144
[1] | Zhao D, Ochi F, Hasegawa A, et al. (2000) Evidence for the location and cause of large crustal earthquakes in Japan. J Geophys Res Solid Earth 105: 13579–13594. doi: 10.1029/2000JB900026 |
[2] | Sun A, Zhao D, Ikeda M, et al. (2008) Seismic imaging of southwest Japan using P and PmP data: Implications for arc magmatism and seismotectonics. Gondwana Res 14: 535–542. doi: 10.1016/j.gr.2008.04.004 |
[3] | Zhao D, Kanamori H, Negishi H, et al. (1996) Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science 274: 1891–1894. doi: 10.1126/science.274.5294.1891 |
[4] | Zhao D, Wang Z, Umino N, et al. (2007) Tomographic imaging outside a seismic network: Application to the northeast Japan arc. Bull Seismol Soc Am 97: 1121–1132. doi: 10.1785/0120050256 |
[5] | EERI KUMAMOTO JAPAN EARTHQUAKE CLEARINGHOUSE: M7.0 APRIL 15, 2016 AT 16:25:06 UTC. Available from: http://www.eqclearinghouse.org/2016-04-15-kumamoto/2016/ 04/22/ground-motions-of-the-2016-kumamoto-earthquake/. |
[6] | Yoshida Y, Abe K (1992) Source mechanism of the Luzon, Philippines earthquake of July 16, 1990. Geophys Res Lett 19: 545–548. doi: 10.1029/91GL02467 |
[7] | USGS Seismicity of the Earth 1900-2012, Philippine Sea plate and vicinity: Open-File Report 2010-1083-M. Available from: https://pubs.usgs.gov/of/2010/1083/m/. |
[8] | Simutė S, Steptoe H, Cobden L, et al. (2016) Full-waveform inversion of the Japanese Islands region. J Geophys Res Solid Earth 121: 3722–3741. doi: 10.1002/2016JB012802 |
[9] | Burks LS (2015) Ground motion simulations: Validation and application for civil engineering problems (Doctoral dissertation, Stanford University). |
[10] | Bhattacharya S, Hyodo M, Nikitas G, et al. (2018) Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence. Soil Dyn Earthquake Eng 104: 390–394. doi: 10.1016/j.soildyn.2017.11.009 |
[11] | Atkinson GM, Boore DM (1998) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85: 17–30. |
[12] | Hwang H, Huo JR (1997) Attenuation relations of ground motion for rock and soil sites in eastern United States. Soil Dyn Earthquake Eng 16: 363–372. doi: 10.1016/S0267-7261(97)00016-X |
[13] | Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismol Res Lett 68: 41–57. |
[14] | Yoshita M, Okano M, Akiyama H, et al. (1999) A spectral analysis of the 21 May 1997, Jabalpur, India, earthquake (M_{w} = 5.8) and estimation of ground motion from future earthquakes in the Indian shield region. Bull Seismol Soc Am 89: 1620–1630. |
[15] | Iyengar RN, Kanth SR (2004) Attenuation of strong ground motion in peninsular India. Seismol Res Lett 75: 530–540. doi: 10.1785/gssrl.75.4.530 |
[16] | Saragoni GR, Hart FC (1974) Simulation of artificial earthquake accelerograms. Earthquake Eng Struct Dyn 2: 249–267. |
[17] | Nau RF, Oliver RM, Pister KS (1982) Simulating and analyzing artificial nonstationary earthquake ground motions. Bull Seismol Soc Am 72: 615–636. |
[18] | Kaul MK (1978) Spectrum-consistent time-history generation. J Eng Mech Div 104: 781–788. |
[19] | Vanmarcke EH (1979) State-of-the-art for assessing earthquake hazards in the United States. Report 14, representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra. Massachusetts Inst of Tech Cambridge Dept of Civil Engineering. |
[20] | Gasparini DA, Vanmarcke EH (1976) Simulated earthquake motions compatible with prescribed response spectra. Massachusetts Institute of Technology, Department of Civil Engineering, Constructed Facilities Division. |
[21] | Hartzell SH (1978) Earthquake aftershocks as Green's functions. Geophys Res Lett 5: 1–4. doi: 10.1029/GL005i001p00001 |
[22] | Irikura K (1983) Semi-empirical estimation of strong ground motions during large earthquakes. Bull Disaster Prev Res Inst. |
[23] | Zeng Y, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic strong ground motions. Geophys Res Lett 21: 725–728. doi: 10.1029/94GL00367 |
[24] | Schneider JF, Silva WJ, Stark C (1993) Ground motion model for the 1989 M 6.9 Loma Prieta earthquake including effects of source, path, and site. Earthquake Spectra 9: 251–287. |
[25] | Beresnev IA, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87: 67–84. |
[26] | Hartzell S, Guatteri M, Mai PM, et al. (2005) Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 Northridge earthquake. Bull Seismol Soc Am 95: 614–645. doi: 10.1785/0120040136 |
[27] | Kristek J, Moczo P (2003) Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite-difference modeling. Bull Seismol Soc Am 93: 2273–2280. doi: 10.1785/0120030023 |
[28] | Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86: 1091–1106. |
[29] | Pitarka A (1999) 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull Seismol Soc Am 89: 54–68. |
[30] | Aoi S, Fujiwara H (1999) 3D finite-difference method using discontinuous grids. Bull Seismol Soc Am 89: 918–930. |
[31] | Moczo P, Kristek J, Vavrycuk V, et al. (2002) 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull Seismol Soc Am 92: 3042–3066. doi: 10.1785/0120010167 |
[32] | Lee SJ, Chen HW, Huang BS (2008) Simulations of strong ground motion and 3D amplification effect in the Taipei Basin by using a composite grid finite-difference method. Bull Seismol Soc Am 98: 1229–1242. doi: 10.1785/0120060098 |
[33] | Komatitsch D, Liu Q, Tromp J, et al. (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 94: 187–206. doi: 10.1785/0120030077 |
[34] | Komatitsch D, Tromp J, Vilotte JP, et al. (2015) The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45: 1139–1164. |
[35] | Priolo E (2001) Earthquake ground motion simulation through the 2-D spectral element method. J Comput Acoust 9: 1561–1581. doi: 10.1142/S0218396X01001522 |
[36] | Komatitsch D, Liu Q, Tromp J, et al. (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 94: 187–206. doi: 10.1785/0120030077 |
[37] | Lee SJ, Chen HW, Liu Q, et al. (2008) Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bull Seismol Soc Am 98: 253–264. doi: 10.1785/0120070033 |
[38] | Stupazzini M, Paolucci R, Igel H (2009) Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code. Bull Seismol Soc Am 99: 286–301. doi: 10.1785/0120080274 |
[39] | Maechling PJ, Silva F, Callaghan S, et al. (2014) SCEC Broadband Platform: System architecture and software implementation. Seismol Res Lett 86: 27–38. |
[40] | Graves R, Pitarka A (2015) Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method. Seismol Res Lett 86: 75–80. |
[41] | Olsen K, Takedatsu R (2015) The SDSU broadband ground-motion generation module BBtoolbox version 1.5. Seismol Res Lett 86: 81–88. doi: 10.1785/0220140102 |
[42] | Crempien JG, Archuleta RJ (2015) UCSB method for simulation of broadband ground motion from kinematic earthquake sources. Seismol Res Lett 86: 61–67. doi: 10.1785/0220140103 |
[43] | Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95: 995–1010. doi: 10.1785/0120030207 |
[44] | Anderson JG (2015) The composite source model for broadband simulations of strong ground motions. Seismol Res Lett 86: 68–74. doi: 10.1785/0220140098 |
[45] | Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seismol Soc Am 73: 1865–1894. |
[46] | Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160: 635–676. doi: 10.1007/PL00012553 |
[47] | Beresnev IA, Atkinson GM (1998) FINSIM-a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismol Res Lett 69: 27–32. doi: 10.1785/gssrl.69.1.27 |
[48] | Zonno G, Carvalho A (2006) Modeling the 1980 Irpinia earthquake by stochastic simulation. Comparison of seismic scenarios using finite-fault approaches. InFirst European Conference on Earthquake Engineering and Seismology. |
[49] | Motazedian D, Moinfar A (2006) Hybrid stochastic finite fault modeling of 2003, M6.5, Bam earthquake (Iran). J Seismol 10: 91–103. |
[50] | Moratto L, Vuan A, Saraò A (2015) A hybrid approach for broadband simulations of strong ground motion: The case of the 2008 Iwate-Miyagi Nairiku earthquake. Bull Seismol Soc Am 105: 2823–2829. doi: 10.1785/0120150054 |
[51] | Ghofrani H, Atkinson G, Goda K, et al. (2012) Interpreting the 11th March 2011 Tohoku, Japan Earthquake Ground-Motions Using Stochastic Finite-Fault Simulations. Available from: https://www.researchgate.net/publication/281463795_Interpreting_the_11th_March_2011_Tohoku_Japan_Earthquake_Ground-Motions_Using_Stochastic_Finite-Fault_Simulations. |
[52] | Raghucharan MC, Somala SN (2017) Simulation of strong ground motion for the 25 April 2015 Nepal (Gorkha) M_{w} 7.8 earthquake using the SCEC broadband platform. J Seismol 21: 777–808. |
[53] | Atkinson GM, Assatourians K, Boore DM, et al. (2009) A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bull Seismol Soc Am 99: 3192–3201. doi: 10.1785/0120090058 |
[54] | Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72: 1217–1231. doi: 10.1029/JZ072i004p01217 |
[55] | Boore DM (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99: 3202–3216. doi: 10.1785/0120090056 |
[56] | Atkinson GM, Assatourians K (2015) Implementation and validation of EXSIM (a stochastic finite-fault ground-motion simulation algorithm) on the SCEC broadband platform. Seismol Res Lett 86: 48–60. doi: 10.1785/0220140097 |
[57] | Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96: 2181–2205. doi: 10.1785/0120050245 |
[58] | Aoi S, Kunugi T, Fujiwara H (2004) Strong-motion seismograph network operated by NIED: K-Net and KiK-Net. J Jpn Assoc Earthquake Eng 4: 65–74. doi: 10.5610/jaee.4.3_65 |
[59] | Asano K, Iwata T (2016) Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth Planets Space 68: 147. |
[60] | Molkenthin C, Scherbaum F, Griewank A, et al. (2014) A study of the sensitivity of response spectral amplitudes on seismological parameters using algorithmic differentiation. Bull Seismol Soc Am 104: 2240–2252. doi: 10.1785/0120140022 |
[61] | J-SHIS (Japan Seismic Hazard Information Station): Subsurface structure of entire Japan. Available from: www.j-shis.bosai.go.jp/map/JSHIS2/download.html?lang=en. |
[62] | Edwards B, Rietbrock A (2009)A comparative study on attenuation and source-scaling relations in the Kantō, Tokai, and Chubu regions of Japan, using data from Hi-Net and KiK-Net. Bull Seismol Soc Am 99: 2435–2460. |
[63] | Petukhin A, Kagawa T, Koketsu K, et al. (2011) Construction and waveform testing of the large scale crustal structure model for southwest Japan. InInternational Symposium on Disaster Simulation & Structural Safety in the Next Generation 2011 (DS'11), September 17–18, 2011, Univ. of Hyogo, Kobe, Japan 2011. |
[64] | Huang HC, Teng TL (1999) An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. Pure Appl Geophys 156: 631–649. |
[65] | Yamazaki F, Ansary MA (1997) Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization. Earthquake Eng Struct Dyn 26: 671–689. doi: 10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO;2-S |
[66] | Wen KL, Chang TM, Lin CM, et al. (2006) Identification of nonlinear site response using the H/V spectral ratio method. Terr Atmos Ocean Sci 17: 533. doi: 10.3319/TAO.2006.17.3.533(T) |
[67] | Bozorgnia Y, Campbell KW (2016) Ground motion model for the vertical-to-horizontal (V/H) ratios of PGA, PGV, and response spectra. Earthquake Spectra 32: 951–978. doi: 10.1193/100614EQS151M |
[68] | Raghukanth ST, Somala SN (2009) Modeling of strong-motion data in northeastern India: Q, stress drop, and site amplification. Bull Seismol Soc Am 99: 705–725. doi: 10.1785/0120080025 |
[69] | Chen SZ, Atkinson GM (2002) Global comparisons of earthquake source spectra. Bull Seismol Soc Am 92: 885–895. doi: 10.1785/0120010152 |
[70] | Wald DJ, Earle PS, Allen TI, et al. (2008) Development of the US Geological Survey's PAGER system (prompt assessment of global earthquakes for response). J Autom Chem 1: 40–42. |
[71] | Boore DM (2010) Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100: 1830–1835. doi: 10.1785/0120090400 |
[72] | Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra 30: 1025–1055. doi: 10.1193/070913EQS198M |
[73] | Boore DM, Stewart JP, Seyhan E, et al. (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra 30: 1057–1085. doi: 10.1193/070113EQS184M |
[74] | Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra 30: 1087–1115. doi: 10.1193/062913EQS175M |
[75] | Chiou BS, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 30: 1117–1153. doi: 10.1193/072813EQS219M |
[76] | Zhang L, Chen G, Wu Y, et al. (2016) Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake. Earth Planets Space 68: 184. doi: 10.1186/s40623-016-0565-3 |