AIMS Geosciences, 2017, 3(2): 187-215. doi: 10.3934/geosci.2017.2.187.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Application of Iterative Noise-adding Procedures for Evaluation of Moment Distance Index for LiDAR Waveforms

1 Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003-8003, USA
2 Pennoni Associates, Virginia Beach, VA 23452, USA
3 Geospatial Sciences Center of Excellence (GSCE), South Dakota State University, Brookings, SD 57007-3510, USA

The new Moment Distance (MD) framework uses the backscattering profile captured in waveform LiDAR data to characterize the complicated waveform shape and highlight specific regions within the waveform extent. To assess the strength of the new metric for LiDAR application, we use the full-waveform LVIS data acquired over La Selva, Costa Rica in 1998 and 2005. We illustrate how the Moment Distance Index (MDI) responds to waveform shape changes due to variations in signal noise levels. Our results show that the MDI is robust in the face of three different types of noise—additive, uniform additive, and impulse. In effect, the correspondence of the MDI with canopy quasi-height was maintained, as quantified by the coefficient of determination, when comparing original to noise-affected waveforms. We also compare MDIs from noise-affected waveforms to MDIs from smoothed waveforms and found that windows of 1% to 3% of the total wave counts can effectively smooth irregularities on the waveform without risking of the omission of small but important peaks, especially those located in the waveform extremities. Finally, we find a stronger positive relationship of MDI with canopy quasi-height than with the conventional area under curve (AUC) metric, e.g., r2 = 0.62 vs. r2 = 0.35 for the 1998 data and r2 = 0.38 vs. r2 = 0.002 for the 2005 data.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Moment Distance Index; MD framework; waveform LiDAR; MDI; noise models

Citation: Eric Ariel L. Salas, Sadichya Amatya, Geoffrey M. Henebry. Application of Iterative Noise-adding Procedures for Evaluation of Moment Distance Index for LiDAR Waveforms. AIMS Geosciences, 2017, 3(2): 187-215. doi: 10.3934/geosci.2017.2.187

References

  • 1. Garner R (2014) New NASA Probe Will Study Earth's Forests in 3-D. NASA, 08-Sep-2014. Available from: http://www.nasa.gov/content/goddard/new-nasa-probe-will-study-earth-s-forests-in-3-d.
  • 2. Ni-Meister W, Jupp DLB, Dubayah R (2001) Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Trans Geosci Remote Sens 39: 1943-1958.    
  • 3. Koetz B (2007) Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106: 449-459.    
  • 4. Wu J (2009) Lidar waveform-based woody and foliar biomass estimation in savanna environments. Proc Silvilaser, 1-10.
  • 5. Lefsky MA, Harding D, Cohen WB, et al. (1999) Surface Lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67: 83-98.    
  • 6. Dubayah RO, Drake JB (2000) Lidar remote sensing for forestry. J For 98: 44-46.
  • 7. Hurtt GC (2004) Beyond potential vegetation: combining Lidar data and a height-structured model for carbon studies. Ecol Appl 14: 873-883.    
  • 8. Lefsky MA, Keller M, Panga Y, et al. (2007) Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J Appl Remote Sens 1: 013537.    
  • 9. Sun G, Ranson KJ, Kimes DS, et al. (2008) Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens Environ 112: 107-117.    
  • 10. Chen Q (2010) Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens Environ 114: 1610-1627.    
  • 11. Lefsky M, McHale MR (2008) Volume estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens 2: 1-19.
  • 12. Duncanson LI, Niemann KO, Wulder MA (2010) Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens Environ 114: 138-154.    
  • 13. Yan WY, Shaker A, El-Ashmawy N (2015) Urban land cover classification using airborne LiDAR data: A review. Remote Sens Environ 158: 295-310.    
  • 14. Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29: 1407-1431.    
  • 15. Vaughn NR, Moskal LM, Turnblom EC (2012) Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sens 4: 377-403.    
  • 16. Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ 148: 70-83.    
  • 17. Blair JB, Rabine DL, Hofton MA (1999) The Laser Vegetation Imaging Sensor (LVIS): A medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm Remote Sens 54: 115-122.    
  • 18. Drake JB, Dubayah RO, Knox RG, et al. (2002) Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81: 378-392.    
  • 19. Danson FM (2014) Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure. Agric For Meteorol 198–199: 7-14.
  • 20. Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113: 1628-1645.    
  • 21. Zhao F (2011) Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar. Remote Sens Environ 115: 2954-2964.    
  • 22. Tang H (2012) Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens Environ 124: 242-250.    
  • 23. Adams T, Beets P, Parrish C (2011) Another dimension from LiDAR – Obtaining foliage density from full waveform data. Int Conf LiDAR Appl Assess For Ecosyst, Oct. 2011.
  • 24. Drake JB, Dubayah RO, Clark DB, et al. (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79: 305-319.    
  • 25. Drake JB, Knox RG, Dubayah RO, et al. (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12: 147-159.    
  • 26. Ni-Meister W, Lee S, Strahler AH, et al. (2010) Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J Geophys Res Biogeosciences 115: p. G00E11.
  • 27. Powell SL, Cohen WB, Healey SP, et al. (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens Environ 114: 1053-1068.    
  • 28. Zolkos SG, Goetz SJ, Dubayah RO (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128: 289-298.    
  • 29. Huang W, Sun G, Dubayah RO, et al (2013) Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sens Environ 134: 319-332.    
  • 30. Whitehurst AS, Swatantran A, Blair JB, et al. (2013) Characterization of canopy layering in forested ecosystems using full waveform Lidar. Remote Sens 5: 2014-2036.    
  • 31. Zhao F, Yang X, Strahler AH, et al. (2013) A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system. Remote Sens Environ 136: 330-341.    
  • 32. Wagner W, Ullrich A, Ducic V, et al. (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm Remote Sens 60: 100-112.    
  • 33. Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogramm Remote Sens 64: 1-16.
  • 34. Hancock S, Lewis P, Foster M, et al. (2012) Measuring forests with dual wavelength lidar: A simulation study over topography. Agric For Meteorol 161: 123-133.
  • 35. Lefsky MA, Harding DJ, Keller M, et al. (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32: L22S02.
  • 36. Hancock S, Armston J, Li Z, et al. (2015) Waveform lidar over vegetation: An evaluation of inversion methods for estimating return energy. Remote Sens Environ 164: 208-224.    
  • 37. Martinuzzi S, Vierling LA, Gould WA, et al. (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113: 2533-2546.    
  • 38. Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Process Mag 16: 22-38.
  • 39. El-Baz A, Gimel'farb G (2007) EM-based approximation of empirical distributions with linear combinations of discrete Gaussians. IEEE Int Conf Image Process 4: IV-373-IV-376.
  • 40. Hofton MA, Minster JB, Blair JB (2000) Decomposition of laser altimeter waveforms. IEEE Trans Geosci Remote Sens 38: 1989-1996.    
  • 41. Anderson K, Hancock S, Disney M, et al. (2016) Is waveform worth it? A comparison of LiDAR approaches for vegetation and landscape characterization. Remote Sens Ecol Conserv 2: 5-15.
  • 42. Hopkinson C, Chasmer L (2009) Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens Environ 113: 275-288.    
  • 43. Muss JD, Mladenoff N, Townsend PA (2011) A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sens Environ 115: 824-835.    
  • 44. García A, Riaño D, Chuvieco E, et al. (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114: 816-830.    
  • 45. Salas EAL, Henebry GM (2013) A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the Moment Distance method. Remote Sens 6: 20-41.    
  • 46. Salas EAL, Henebry GM (2012) Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Isr J Plant Sci 60: 65-76.    
  • 47. Aguilar MA, Nemmaoui A, Novelli A, Aguilar FJ, García Lorca A (2016) Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series. Remote Sens 8: 513.    
  • 48. Salas EAL, Boykin KG, Valdez R (2016) Multispectral and texture feature application in image-object analysis of summer vegetation in eastern Tajikistan Pamirs. Remote Sens 8: 78.    
  • 49. Salas EAL, Henebry GM (2016) Canopy height estimation by characterizing waveform LiDAR geometry based on shape-distance metric. Geosci 2: 366-390.
  • 50. Cawse-Nicholson K, van Aardt J, Romanczyk P, et al. (2014) Below-ground responses in waveform lidar due to multiple scattering. Available from: ftp://cis.rit.edu/people/vanaardt/Temp/PostDoc/Cawse_Echo_letter_2014.pdf
  • 51. Fieber FD, Davenport IJ, Tanase MA, et al. (2015) Validation of canopy height profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment. ISPRS J Photogramm Remote Sens 104: 144-157.    
  • 52. Radke RJ, Andra S, Al-Kofahi O, et al. (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14: 294-307.    
  • 53. Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80: 569-584.    
  • 54. Sripad A., Snyder D (1977) A necessary and sufficient condition for quantization errors to be uniform and white. IEEE Trans Acoust Speech Signal Process 25: 442-448.    
  • 55. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627-1639.    
  • 56. Madden HH (1978) Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Anal Chem 50: 1383-1386.    
  • 57. Kotchenova SY, Song X, Shabanov NV, et al. (2004) Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sens Environ 92: 158-172.    
  • 58. Li Q (2008) Decomposition of airborne laser scanning waveform data based on EM algorithm. Int Arch Photogramm Remote Sens Spat Inf Sci 37: 211-218.
  • 59. Popescu SC, Wynne RH (2004) Seeing the trees in the forest. Photogramm Eng Remote Sens 70: 589-604.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Eric Ariel L. Salas, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved