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Abstract: The new Moment Distance (MD) framework uses the backscattering profile captured in
waveform LiDAR data to characterize the complicated waveform shape and highlight specific regions
within the waveform extent. To assess the strength of the new metric for LiIDAR application, we use
the full-waveform LVIS data acquired over La Selva, Costa Rica in 1998 and 2005. We illustrate how
the Moment Distance Index (MDI) responds to waveform shape changes due to variations in signal
noise levels. Our results show that the MDI is robust in the face of three different types of
noise—additive, uniform additive, and impulse. In effect, the correspondence of the MDI with canopy
quasi-height was maintained, as quantified by the coefficient of determination, when comparing
original to noise-affected waveforms. We also compare MDIs from noise-affected waveforms to MDIs
from smoothed waveforms and found that windows of 1% to 3% of the total wave counts can
effectively smooth irregularities on the waveform without risking of the omission of small but
important peaks, especially those located in the waveform extremities. Finally, we find a stronger
positive relationship of MDI with canopy quasi-height than with the conventional area under curve
(AUC) metric, e.g., * = 0.62 vs. 7 = 0.35 for the 1998 data and 7 = 0.38 vs. * = 0.002 for the 2005 data.
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1. Introduction

The active remote sensing using LiDAR has seen rapid developments in the past two decades.
With a promise of improved accuracy of biophysical measurements and the spatial analysis done
in the third dimension, LiDAR could play an important role in atmospheric and environmental
field of studies. In fact, NASA’s future launch of the Global Ecosystem Dynamics Investigation
(GEDI) LiDAR space mission in 2018 [1] could provide the waveform laser scanning technology
more boost. The full-waveform LiDAR system has the ability to record many returns per emitted
pulse, as a function of time, within the vertical structure of the illuminated object, therefore
showing position of individual targets, and finer details of the signature of intercepted surfaces or
the proportion of the canopy complexity. Information associated with the illuminated object can
be decoded from the generated backscattered waveform, as key features of the waveform such as
the shape, area, and power are directly related to the geometry of the illuminated object [2—4]. The
richness of the LiIDAR waveform holds the promise to address the challenge of characterizing in
detail the geometric and reflection characteristics of vegetation structure, e.g. the vertical canopy
volume distribution [5].

Waveform LiDAR has been used comprehensively in various ecosystem-related studies. It has
shown to accurately retrieve canopy height [6-10], tree form [11], terrain relief [12], canopy
architecture of urban vegetation [13], and classify species [14-16]. It can reduce the cost of
mapping large forest regions [17], rapidly record vertical canopy profiles [18], and provide a more
defined vertical arrangement of forest structure from canopy top to ground surface [6,18,19]. Data
from large-footprint waveform LiDAR systems have been utilized to estimate LAI and canopy
cover [20-22], foliage density [23] and to improve the estimation of biomass—changes in LIDAR
vertical canopy profiles and the mean canopy height metric were correlated with estimated
aboveground biomass [5,18,20,24-28]. Recent studies used waveform LiDAR for mapping change
of forest biomass [29], canopy layering [30], and foliage profiles [31].

Usually, the raw incoming/received waveform displays system noise [32—34]. The noise can
easily overlap returns especially in complex forested areas where waveform peaks from ground
and surface objects can be broadened and mixed caused by different layers of the vegetation,
making the recognition of ground surface difficult [10,35]. In most cases, noise reduction or
elimination may be conducted [36] to extract the waveform intensity and avoid the noise to be
detected as signal. This is done, for instance, through smoothing with a Gaussian filter at a
specified window size [9]. Smoothing, however, may pose major risk in eliminating important
snags and understory shrubs features [37] that are usually found at the broadened end of the

waveform near the ground return.
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Detection of the ground surface return is needed to extract the canopy height using the direct
method, which involves the identification of wave signal start (WSS) and wave ground peak (WGP)
on the waveform. There is no widely accepted method for estimating the locations of the WSS and
WGP. One approach currently utilized sets thresholds [10,36] above the mean background noise in
the waveform. Thresholds vary from 3o [9], 40 [35], to 4.5 [8], where o is the standard deviation
of the background noise. In either smoothed or unsmoothed waveforms, thresholding can pose a risk
of removing the broadening effects at the extents of the waveform that may carry vital information
about understory vegetation or structure. The waveform is also susceptible to extreme values in the
background that could cause premature peaking, which eventually could lead to nonsensical
estimates of canopy height [34]. Therefore, it is necessary to come up with a better threshold limit
or a sufficient smoothing process that could improve data extraction and pull out the true signal
without jeopardizing the information that may be available at every change of the morphology of
the LiDAR waveform. Appropriate parametric functions may be applied to the waveform to
reconstruct the shape and retrieve information about the object and characterize the properties.
Conventional LiDAR methods include splines [38], the Gaussian mixture models [32,39], and the
non-linear least-square approach [40]. In many mapping applications, Gaussian approximation has
been shown to be satisfactory for signal modeling, although Gaussian fitting is less satisfactory for
high amplitude pulses [41].

The preprocessing of full-waveform LiDAR data usually leads to using only part of the return
signal. In most cases the full intensity of the LiDAR return is rarely used. Hopkinson & Chasmer [42]
emphasized the importance of using the intensity of the LiDAR returns, especially in canopy
fractional cover models, since the intensity values provide some quantification of the surface areas
interacting with the laser beam. In characterizing the intercepted scenes, it is essential to know the
full geometry (shape) and radiometry (power) of the signal as both could explain the geometry and
radiometry of the detected object. Muss et al. [43] took advantage of the geometry and radiometry
of the waveform to introduce shape-based metrics—centroid (C) and radius of gyration (RG)—for
forest structure analysis. While these metrics demonstrated better relationships with estimated
aboveground biomass (EAGB) than traditional height-based metrics such as height of median
energy (HOME) (e.g., [24,25]) and relative heights (RH) or height percentiles (e.g., [9,44]), the
centroid by itself cannot track changes of the waveform shape. Expressed as the root mean square of
the sum of the distances from the centroid to all points on the waveform, RG is dependent on the
centroid and cannot stand alone.

Here we use full-waveform LVIS datasets from La Selva, Costa Rica, to assess the strength
of the new Moment Distance framework, which was first introduced for characterizing fine
resolution spectrometer data [45,46], and later on seen to be more useful for detecting plastic
greenhouses [47], mapping sparse vegetation [48] and estimating canopy heights using LiDAR
waveform [49]. To study shapes we use the full unsmoothed LVIS Geolocated Waveform (.1gw)
dataset. We assess how different types of noise and smoothing procedures impact the new metric

in characterizing the shape of the full waveform extent and waveform subsets. As noise can be
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expected to alter the shape of the waveform, we examine the sensitivity of the new metric to
varying levels of uncertainty and in various subsets of the waveform, using metric obtained from
the original waveform as the reference. The performance of our method is investigated by how the
new metric performs against the canopy quasi-height. We smooth the waveform using various
window sizes to demonstrate the relationship of the MDI against the canopy quasi-height and

compared the results to the area under curve (AUC) method [50,51].

2. Materials and Method

2.1. Waveform LiDAR datasets

The full-waveform LiDAR datasets were acquired in 1998 and 2005 over the same period in
La Selva, Costa Rica using the Laser Vegetation Imaging Sensor (LVIS), which is an airborne
NASA laser scanning altimeter. We specifically used the LVIS geolocated waveform (.Igw) files
from 1998 and 2005, with both having the same number of 431 wave counts. The LVIS laser device
produces Gaussian optical pulses at a wavelength of 1064 nm [17]. We paired LiDAR waveforms
samples from 1998 and 2005 datasets based on the latitude and longitude coordinates. The pairings
served as inputs for generating noise-affected waveforms in our analysis.

LVIS waveform data are easily converted into distance since the signal returns are measured as
a function of time. Accounting both the times the laser pulse was emitted and returned could give a
measure of the distance from the sensor to the intercepted surface. LVIS has a scan angle of about
12 degrees, and could cover 2 km swaths of surface from an altitude of 10 km, with 10 to 25 m
footprint size. We estimated the canopy height (we refer it as quasi-height) from the waveform as
the difference from the power of the first increase of return above the mean noise level to the center

of the last pulse, which is designated as the ground return.

2.2. Moment distance framework

The Moment Distance is a new analytical framework that uses a computationally simple metric
to capture the shape of the curve. The approach takes advantage of the multiple returns of the
waveform LiDAR to monitor changes in shape and its asymmetry—exploiting the range from first
detected signal to last detected signal above the noise threshold. The formulation of the concept
revolves around using the raw waveform to retain richness of the data. In addition, it means
avoiding Gaussian fittings in our goal to detect changes of the waveform (e.g., widening of peaks,
existence of complex extremes) with the change of canopy parameters, such as canopy height. It
involves fixing two points as references and has two aspects: the set of equations that generate the
MD metrics and the choice of positions within the waveform to highlight. Assume that the
waveform is displayed in Cartesian coordinates with the abscissa displaying time lapse t and

ordinate displaying backscattered power p. Let the subscript LP denote the left pivot or earlier
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temporal reference point and subscript RP denote the right pivot or later temporal reference point.
Let #p and trp be the time value observed at the left and right pivots, respectively. The MD

framework is described in the following set of equations:

MDyp = ¥iBF (9% + (i — t,p)%)°05 (1)

MDgp = 32 (02 + (tgp — )?)°5 (2)

i=trp

MDI s MDLP - MDRP (3)

The moment distance from the left pivot (MDyp) is the sum of the hypotenuses constructed
from the left pivot to the power at successively later times (index i from #.p to frp): one base of each
triangle is difference from the left pivot (i—#.p) along the abscissa and the other base is simply the
backscattered power at i. Similarly, the moment distance from the right pivot (MDgp) is the sum of
the hypotenuses constructed from the right pivot to the power at successively earlier times (index i
from frp to #.p): one base of each triangle is the difference from the right pivot (frp—i) along the
abscissa and the other base is simply the backscattered power at i.

The MD Index (MDI) is an unbounded metric. It increases or decreases as a nontrivial
function of the number of wave counts considered and the shape of the waveform that spans those
contiguous wave counts. The number of wave counts is a function of the temporal resolution of
the LiDAR (digitization rate) and the length of the waveform (i.e., full extent or subsets) being
analyzed. Depending on digitization rate, the matrix resulting from the calculations of the MDs
within a range of waveform could be a massive set of numbers. As the MDI is designed to exploit
the multiple wave counts and the asymmetry of the waveform, the new metric may lose its
capability to detect shape changes or movements of wave morphologies when used improperly.
Being resolution-dependent, MDI may ill perform and fail to define the waveform shape when
there are only few points between pivots. Table 1 presents some limiting cases when computation
of the MDs and MDI are not appropriate.

Figure 1 demonstrates the MDI when applied to lines. Illustrated simply, a curve opening down
(Figure 1A) will differ from a curve opening up (Figure 1B) when defined by moment distances
with varying pivot ranges. In Figure 1C, for instance, a two-peak, opening-down curve defined by
fixing the early time wave count and increasing the range one wave count at a time (going from
point 1 to point 2) a slope becomes evident when a second peak is contained within the pivot range.
The dip around count 187 defines the largest difference of the change of shape detected by a
particular pivot pair. A similar pattern is observed when fixing the late time wave count and
increasing the range one count at a time (going from point 2 to 1). As shape dissimilarities are
detected by comparing MD behavior from point 1 to MD behavior from point 2, the largest

difference in shape is recorded when the earlier peak is covered by the range.
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Table 1. Simple cases where the MD approach would not be suitable. Note that MDI exploits

multiple bins and limiting the number of bins may fail to define the waveform shape.

Cases

Equations of MDI

Remarks

b1

LP RP

LP 1unit RP

D>

MDyp = (12 + y,%)
MDgp = /(12 + y,2)
if:

pi=p2, MDI=0
p2< p;, MDI = negative value
p2> p1, MDI = positive value

MDI =0

PI1<p2<p3

MDI = /(4 +p,?) = (4 +p:?)

MDI =0

When the pivots are the only
values, then a curve is not
described. This defeats the
purpose of using MDI to define
the shape of a line that can be
described by the slope direction.
The sign of the magnitude of the
MDI changes when p < p,.

Missing to include the backscatter
powers p; and p,, and only used
p3. No shape has been defined in
this case. Missing significant
returns of the waveform must be

avoided.

Too few points. Assuming p; as
noise, this illustrates the capability
of the MDI to eliminate unwanted

returns.

MDI is not the appropriate
approach in this type of curve
involving only two returns with
the same magnitude. This defeats

the purpose of the new metric.

D

LP RP

D1 D>

LP RP
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Figure 1. Sample illustrations of MDI applied to simple curves, with: (a) curve
opening down, (b) curve opening up, (c¢) two curves opening down, and (d) two curves
opening up. The figures demonstrate the changes of the MDI values with varying
pivot ranges, moving from point 1 to 2, and vice versa. Maximum values are observed

at maximum shape differences, usually occurring at the inclusion of peaks.

In a curve with two dips, such as in Figure 1D, the maximum differences in shape around bins
180 to 185 occur when the dips are included in the range. Minimal differences in shapes are
expected for short pivot ranges. It is important to stress that the MDI detects the differences of
curvature regardless of where the pivot is being fixed, such as the cases in Figure 1, provided that
the important peaks are taken into consideration in the pivot range. Detecting the differences is
crucial in the following analysis using the LIDAR waveforms as various peaks and dips may exist
from the first signal to the last signal detected. Using the proper range that encompasses the
significant peaks of the waveform could lead to the shape difference maxima: the maximum
difference of the summation of distances from point 1 and the summation of distances from point 2.
The value of the difference tells how the shape of the waveform as viewed from reference point 1
varies from the one viewed from reference point 2.

Figure 1 illustrates that the selection of LP and RP may not necessarily be exactly at the start of
signal and end of signal, respectively. In equations 1 and 2, there is no fixed location of pivots;
instead, an option is given to pick the range of wave counts. The locations of LP and RP do not have
a strict limitation as to where they should be placed exactly along the wave count axis, thus, making

MDI exploitable at different locations. The location of the MDI maxima often occurs right before or
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right after signal peaking. Elimination of few points after the first detected signal and/or points
before the last detected signal may not hurt the MDI nor affect the detection of shapes from any of
the set fixed pivots.

2.3. Generation of noise-affected waveforms

We added three types of random noise to the LiDAR signal: additive (AD), uniform additive
(UA), and impulse (IM). The additive Gaussian noise model [52] is the simplest noise model that
consists in adding a realization of a zero mean random vector to a clean return signal. The impulse
noise [53] is a different type of noise that consists of sparse impulsions, generated by a random
distribution with slowly decaying probability. The additive uniform noise [54] is the kind of noise
where noise is uniform in a given waveform interval. We define the resulting noisy waveform /,(7)

by the sum of the original waveform /,(?) and the added noise n(z) where ¢ indicates time.

L(t) = Io(t) +n(t) (4)

We individually ran the additive Gaussian, uniform additive, and impulse error algorithms to
the set of paired LiDAR waveforms from the 1998 and 2005 La Selva datasets. This process
included generating 1000 noise realizations per type of noise model at four levels of uncertainty
(5%, 10%, 15%, and 20%), and in two waveform subsets analyzed—Ieading and trailing subsets.
More of these two subsets are discussed below. We observed waveform behaviors such as how it
responds to noise and how certain types of waveform morphology changes to different types of
noise. We then looked at the MDI as a function of the original quasi-height (calculated height from
original waveform) to assess how the introduction of the levels of uncertainty to the waveforms
using three different types of noise models changed the initial observed trend of the original MDI

against the canopy quasi-height.

2.4. Smoothing waveforms

In addition to adding noise, we also looked at the behavior of the MDI when waveforms were
smoothed to different degrees. We eliminated the small peaks using forward-moving average,
backward-moving average, and centered-moving average window approaches as described by
Savitzky & Golay [55] and Madden [56] by calculating the average of power of adjacent bins [12,57].
The forward-moving average smoothens the waveform by moving a specified window forward in
time, while the backward-moving average smoothens the waveform as it moves backward in time.
Since MD is shape-dependent, care was taken not to over-smooth the waveform (i.e., using too large a
window or percent wave counts). As much as possible, we preserved the significant peaks, such as the
canopy and the ground [58]. Moving windows of 1% to 3% of the total wave count were used to

smooth irregularities without degrading waveform morphologies.
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2.5. Calculation of MDI from full waveform extent and waveform subsets

The full extent of the recorded waveform, plus two defined subsets—Ileading and trailing
subsets [8] were used to illustrate the impacts of noise integration to the waveforms and to the value
of the MDI (Figure 2). The full extent covers the range starting at the first detected pulse up to the
last detected pulse. The leading subset covers the range of time bins from the start of the signal to
the location of the maximum peak at early time (above the mean noise level). The trailing subset
defines the range from the location of the maximum peak at early time to the maximum peak at a
later time (ground response). It is worth noting that a subset can be any specific and narrow range
and it is always defined by the locations of the left and right pivots (represented by gray dots in
Figure 2) that necessary for the computation of MDI.

N Leading ! Trailing Subset

Subset

65

55

45

Backscatter Power

35

25

15
210 230 250 270 290 310

Time Bin

Figure 2. Sample of LVIS waveform and subsets used for MDI calculations. A pair of
pivots defines the range of a subset. Leading subset is defined by the first pivot (signal
start) to the second pivot (maximum peak early time). Trailing subset is defined by
first pivot (maximum peak early time) to the second pivot (maximum peak later time).
The abscissa is in terms of time () and the ordinate is the backscattered power (p).

Between the two subsets, the trailing subset includes two important waveform morphologies
(maximum peaks at early and later times) in its range. These two waveform morphologies are
important as both could dictate the magnitude of MDI [48]. In the later section of this chapter, we
made use of canopy quasi-heights to describe how each subset, defined by range at key profile

locations of the waveform, relates to our new metric.
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3. Results

3.1. Generated noise-affected waveforms

Figure 3 give insights to a noise generated at 10% for a pair of waveform samples. Note that each
pair in the dataset may illustrate different behaviors of the waves. Sample 1998 (LVIS waveform file
ID 666, shot number 574836) shows two distinct peaks representing the canopy (maximum peak
earlier time) and ground (maximum peak later time) return pulses. The corresponding pair in 2005
(LVIS waveform file ID 8983, shot number 2607680) also manifests the two peaks, with the addition
of an earlier shorter peak. Among the three error algorithms, the impulse type differed in distribution
of noise because of the appearances of spikes along the waveform.

140 250
Sample LVIS Waveform With Noise Sample LVIS Waveform With Noise
120 : (1998) - (2005)
% 10 y 10% AD o 10% AD
2 ; 10% UA 3 10% UA
t go4 ¥ 1 A e 10% IM E 150 ALY
1] e (]
b —Original ;] ——Original
© 60 s 100
w w
= =
(%] L%)
@ 40 v}
o 4]
50

20

0 0
a 180 230 280 330 b 180 230 280 330

Time Bin Time Bin

Figure 3. A pair of LVIS waveform samples from (a) 1998 (LVIS waveform file ID 666,
shot number 574836) and (b) 2005 (LVIS waveform file ID 8983, shot number
2607680) datasets showing the original and generated waveforms with 10% noise. The
noise is randomly simulated and applied throughout the wave extent. AD = Additive
Noise; UA = Uniform Noise; IM = Impulse Noise.

3.2. Error effects on waveform shape and the MDI

Table 2 lists the statistics of the MDI from the averaged 1000 noise-affected waveforms
for a sample pair. Using the full extent of the waveform (Table 2a), large MDI values for 1998
and 2005 were observed with the impulse error algorithm. Negative MDI values were seen
using the full extent and leading subset, while positive values are generated by the trailing
subset.
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Table 2. MDI statistics of the original and 1000 generated waveforms for a pair of samples
from 1998 (waveform file ID 666) and 2005 (waveform file ID 8983) datasets. Table 2a is for
the full extent, 2b for the leading subset, and 2¢ for the trailing subset. Notice that the impulse
showed the most variability estimated with CV, especially at high uncertainty levels.

2A. Full Extent: Original MDI (1998) =-742.33 Full Extent: Original MDI (2005) =-259.68
1998 5% 10% 15% 20% 2005 5% 10% 15% 20%
Mean -741.9 -7422  -743.1 -744.6 Mean -259.6 -260.2 -2614  -263.2
AD (0\Y 2.0 4.1 6.1 8.0 AD (0\Y 24 4.7 7.0 9.2
UA Mean -7434  -745.1 -747.2 -750.1 UA Mean -260.3 -261.5 -2633  -265.8
(0\Y 2.1 43 6.4 8.4 Ccv 2.3 4.6 6.8 9.0
Mean -744.6 -7483  -753.5 -761.3 Mean -261.2 -263.3 -269.9 -280.4
™ ()% 2.0 54 12.8 22.8 ™ Ccv 2.3 14.2 44.7 83.1
2B. Leading Subset: Original MDI (1998) =-29.12 Leading Subset: Original MDI (2005) =-37.36
1998 5% 10% 15% 20% 2005 5% 10% 15% 20%
Mean  -29.1 -29.2 -29.3 -29.5 AD Mean  -373 -37.3 -37.4 -37.4
AP (0\Y 2.7 5.4 8.3 11.6 [0\ 3.4 6.9 10.6 14.6
Mean  -29.1 -29.2 -29.4 -29.6 UA Mean  -374 -37.5 -37.6 -37.7
oA (0\Y 2.9 5.8 8.8 12.0 Ccv 3.6 7.2 10.9 14.7
Mean  -29.7 -30.3 -30.9 -31.4 IM Mean  -38.1 -39.0 -39.7 -40.4
™ (0\Y 2.9 6.7 10.6 13.9 Ccv 3.5 7.8 12.1 15.7
2C. Trailing Subset: Original MDI (1998) = 92.17 Trailing Subset: Original MDI (2005) = 233.23
1998 5% 10% 15% 20% 2005 5% 10% 15% 20%
Mean 92.3 92.2 92.0 91.5 AD Mean 2332 232.9 232.2 231.0
AD (0\Y 5.6 11.3 17.3 23.8 (0\Y 2.0 4.1 6.3 8.7
UA Mean 92.1 91.9 91.5 90.9 UA Mean  233.1 232.6 231.7 230.5
Cv 5.8 11.7 17.8 24.1 (O\Y 2.1 4.2 6.4 8.7
Mean 90.7 88.8 86.9 84.3 IM  Mean 2320 230.3 228.1 225.1
™ (0\Y 5.8 12.3 19.4 26.4 (O\Y 2.1 4.4 7.0 9.4

Statistical results from the leading subset are presented in Table 2b. Among the three error
algorithms, impulse showed the most variability, especially at high uncertainty levels. With 15%
and 20% uncertainty levels, the coefficient of variations (CV) for 1998 are 10.6% and 13.9%,
respectively; for 2005 are 12.1% and 15.7%, respectively.

For the trailing subset (Table 2c), MDIs exhibited positive values. Statistical calculations showed
minimum MDI values were generated using impulse at different levels of errors, ranging from 8.17 to
74.0 for the 1998 sample. A large MDI range was manifested in the 2005 sample (139.36 to 217.23).
Smaller ranges were observed from the additive (49.49 and 47.52, for 1998 and 2005 respectively)
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and the uniform additive (60.50 and 54.84, for 1998 and 2005 respectively) for the trailing subset.

The mean MDI values of the additive and the uniform additive approaches are comparable at
various error levels in both subsets (Table 2). In fact, increasing the level of noise from 5% to 20%
showed no big differences of the MDI means between AD and UA in both years. Differences of
MDI means were observed in AD vs IM, and UA vs IM, after significance testing for both the
leading (p < 0.05 in all tests) and trailing subsets (p < 0.05 for 1998; p < 0.10 for 2005). The full
extent of the waveform, however, showed no significant differences of the means in any of the
one-to-one comparisons (AD vs UA, AD vs IM, UA vs IM). The MDI increased negatively in the
leading and full-extent with every increase of uncertainty. The trailing subset, on the other hand, had

decreasing positive MDI at each increase of uncertainty.
3.3. Standard Error (SE) and RMSE of MDI

Large MDI values as the noise levels increased is evident on the bar graphs of MDI and
standard error of 1000 noise realizations (Figure 4, full extent of the wave). At lower noise levels,
the SE is lower relative to higher noise levels. As the noise level increased the average MDI further
deviates from the reference MDI, while the SE increased alongside. The impulse approach showed
large increases of SE at differing noise levels. These increases can be observed for both the tested
1998 and 2005 samples.

Computed RMSE (Table 3) showed the performance of each noise approach using two pairs of
waveform samples both from 1998 and 2005 datasets. The additive and the uniform additive
approaches resulted to smaller values of RMSE compared to the impulse. However, when the level

of noise is low (e.g., 5%), the three approaches were comparable.

Table 3. Computed RMSE of MDI for two pairs of samples using the full extent of the waveform
in four percentage levels of noise: (A) 1998 waveform file ID 666; 2005 waveform file ID 8983
and (B) 1998 waveform file ID 9999; 2005 waveform file ID 1408. The highest RMSE values are
found using the IM approach, especially at high levels of noise.

A. 1998 5% 10% 15% 20% A. 2005 5% 10% 15% 20%
AD 15.12 30.16 45.06 59.06 AD 6.11 12.20 18.30 24.44
UA 15.95 31.90 47.81 63.65 UA 6.03 12.12 18.31 24.64
M 14.90 40.63 97.04 174.80 M 6.12 37.72 120.99 233.84

B. 1998 5% 10% 15% 20% B. 2005 5% 10% 15% 20%
AD 11.90 23.75 35.51 47.13 AD 5.29 10.56 15.80 20.99
UA 12.96 2591 38.82 51.66 UA 5.12 10.23 15.32 20.38
M 12.15 36.87 94.80 173.91 M 5.19 37.30 120.89 233.04
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Figure 4. Average MDI and Error bar plots for 1000 noise realizations analyzed for
each noise approach, using the full extent of the waveform: (a) for 1998 (waveform file
ID 666) and (b) for 2005 (waveform file ID 8983). Take note of the increasing values of
the MDI as the levels of noise are increased. The impulse noise shows abrupt increase
of the standard deviation of the mean. The reference MDI is shown as horizontal line.

Figures 5 and 6 show the average MDI and the equivalent standard errors for the leading and
trailing portions of the waveform, respectively. Similar to the results in Figure 4, the impulse model
resulted to an average MDI with the highest offset from the reference value with respect to the other

two noise models.
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Figure 5. Using the leading subset of the waveform, the plots show the average MDI
and the equivalent standard errors for 1000 noise realizations analyzed for each noise
types at various levels of uncertainty. The left panel is for the 1998 sample (waveform
file ID 666), while the right panel is for its matched pair in 2005 (waveform file ID
8983). All values of MDI are negative, with the impulse approach having the largest
SE. The reference MDI is shown as horizontal line.
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Figure 6. Using the trailing subset of the waveform, the plots show the average MDI
and the equivalent standard errors for 1000 noise realizations analyzed for each noise
types at various levels of uncertainty. The left panel is for the 1998 sample (waveform
file ID 666), while the right panel is for its matched pair in 2005 (waveform file ID
8983). In this subset, all values of MDI are positive, with the impulse approach having
the largest SE. The reference MDI is shown as horizontal line.

3.4. Moment distance index vs canopy quasi-heights

A positive relationship is manifested in Figure 7 between the MDI from full extent and the
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derived canopy quasi-heights from 16 pairs of waveforms. As shown in Table 4, the relationship is

true for both the years 1998 and 2005, with the results from 1998 exhibiting stronger linear

relationship (averaged /”=0.62 vs. averaged "=0.38). The trailing subset shows a similar trend

(Figure 8) as the one using the full extent of the waveform, albeit with less explanatory power

(averaged "=0.30 vs. averaged 7°=0.22). However, even at a high noise level (20%), the trend does

not changed.

Table 4. Coefficients of determination (+*) of the MDI vs canopy quasi-heights for the 1998 and

2005 data. Values are kept to four significant figures to show differences.

1998 Full Extent 1998 Trailing Subset

Noise  Reference 5% 10% 15% 20% Ave  Reference 5% 10% 15% 20% Ave
AD 0.6168 0.6169 0.6176  0.6218  0.6206 0.6192  0.2956  0.2952 0.2952 0.2956 0.2938 0.2950
UA 0.6168 0.6168 0.6173  0.6272  0.6200 0.6203  0.2956  0.2953 0.2953 0.2949 0.2944 0.2950
IM 0.6168 0.6175 0.6186 0.6170  0.6222 0.6188  0.2956  0.2926 0.287 0.2821 0.2778 0.2849

2005 Full Extent 2005 Trailing Subset

Noise  Reference 5% 10% 15% 20% Ave  Reference 5% 10% 15% 20% Ave
AD 0.3756 03755 03756  0.3757 03760 0.3757 02236  0.2238 0.2239 0.2239 0.2238 0.2239
UA 0.3756 0.3757 03758 0.3761 03765 03760  0.2236  0.2238 0.2239 0.2238 0.2237 0.2238
IM 0.3756 03757 03759 03762 03765 03761 02236  0.2065 0.2043 0.2033 0.2001 0.2036

Table 5. Computed RMSE of MDI with 16 pairs of samples from the 1998 and 2005

noise-affected waveforms using the full extent and the trailing subset. Notice that the

highest RMSE values are found using the IM approach.

Full Extent (1998) Full Extent (2005)

Noise 5% 10% 15% 20% Noise 5% 10% 15% 20%
AD 0.352 0.395 1.793 2.613 AD 0.0979 0.396 1.179  2.383
UA 0957 2457 5180  7.232 UA 0.3969 1.197 2407  4.026
M 2.277 6.023 20.87 18.78 M 1.2523 2.855 8.709 18.13

Trailing Subset (1998) Trailing Subset (2005)

Noise 5% 10% 15% 20% Noise 5% 10% 15% 20%
AD 0.121 0.658 1.749  3.411 AD 0.310 1.441 3.457 6.417
UA 0.140  0.705 1.798 3.433 UA 0.344 1.510 3.537 6.464
IM 2.021 4.750  7.796 11.66 M 1.819 4.560 7.983 12.47

From the 16 pairs of samples, we measured the magnitude of the error between the reference

MDI and corresponding observed MDI from noise-affected waveforms using RMSE. Table 5 shows
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the results for each approach using the full waveform and the trailing subset. Small RMSE values
were related to 5% noise on the waveform while the high RMSE values were from the 20% noise

level, regardless of the type of noise approach. The highest RMSE values were found using the IM

approach.
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Figure 7. MDI (from full-extent waveform) as a function of canopy quasi-height for 16
pairs of the 1998 and 2005 La Selva LVIS datasets. First column: 1998 dataset with
added noise levels and; Second column: 2005 dataset with added noise levels. A minimal
effect of the noise is observed on the relationship of the MDI with the canopy

quasi-height. See Table 4 for the coefficients of determination.
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Figure 8. MDI (from waveform trailing subset) as a function of canopy quasi-height
for 16 pairs of waveforms from the 1998 and 2005 La Selva LVIS datasets. First
column: 1998 dataset with added noise levels and; Second column: 2005 dataset
with added noise levels. See Table 4 for the coefficients of determination.

3.5. Waveform similarities

We compared waveform components between two signals using correlation analysis on the
1998 and 2005 pair of subsets at different noise levels. We tabulated in Table 6 the correlations
between two waveforms (original and noise-affected) with varying signal powers, putting emphasis
on the Spearman rank-order correlation coefficient, 7, values. Comparing between subsets in Table 6,
the leading subsets for both years showed higher 7, than the trailing subset. For instance, the 2005
leading subset had a minimum 7, = 0.88 (Table 6B1), while its equivalent in the trailing subset had
rs= 0.72 (Table 6B2). In the 1998 leading subset, the IM showed an ,=0.91 (Table 6A1), while its
equivalent trailing subset was only 7,=0.67 (Table 6A2).
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Table 6. Spearman correlation coefficients (r;) for the leading (A1/B1) and trailing (A2/B2)
subsets. The r;, measures the strength of the associations between the original waveform
segment subset and the generated subsets with noise (significant at p = 0.05). Note that the
statistics of the pair of samples are from 1998 (waveform file ID 666) and 2005 (waveform
file ID 8983).

Al. Leading Subset (1998) A2. Trailing Subset (1998)

Noise 5% 10% 15% 20% Noise 5% 10% 15% 20%
AD 0.97 0.93 0.91 085 AD 0.95 0.87 0.81 0.75
UA 0.98 0.96 0.94 091 UA 0.96 0.90 0.83 0.76
M 0.97 0.94 0.92 091 IM 0.94 0.85 0.76 0.67
Bl. Leading Subset (2005) B2. Trailing Subset (2005)

Noise 5% 10% 15% 20% Noise 5% 10% 15% 20%
AD 0.98 0.95 0.92 0.89 AD 0.97 0.93 0.88 0.80
UA 0.97 0.95 0.92 0.88 UA 0.97 0.90 0.84 0.73
M 0.98 0.97 0.95 092 IM 0.96 0.89 0.82 0.72

3.6. Comparison between noise levels

Comparing among the noise levels, waveforms with less noise showed a higher degree of
similarity to the original curve than those with high noise levels. From 5% to 20% noise level, the
waveforms with 5% additive, uniform additive, and impulse noise resulted in much closer
agreements (e.g. trailing subset, Table 6A2—the additive 5% has r; = 0.95; the 10% has r;, = 0.87;
the 15% has ;= 0.81; and the 20% has »; = 0.75) to the original.

3.7. Comparison among additive, uniform additive, and impulse

Between additive and uniform additive, the effects of the two approaches to the waveform are
comparable, returning equivalent 7, values as shown in Table 6. As shown in the previous section
(Tables 5, 6, and 7), the distributions of the MDI for 1000 realizations of the waveforms for the
additive and uniform additive were almost always equal. In the case of the impulse model, the
appearance of intermittent spikes did not tremendously change the shape of the curve in general. In
fact, based on the results of the leading subsets for the 1998 and 2005 datasets (Tables 6A1 and
6B1), the IM showed high 7, values (as high as r, = 0.98), comparable to the results of the other two
models, AD and UA.
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3.8. Smoothing waveforms

Table 7 showed the comparison of the performances of the three smoothing window types
measured in terms of RMSE. The forward-window approach gave a large RMSE of MDI, 83.93 and
53.44 for 1998 and 2005, respectively, based on a moving window of 3% of the total wave counts.

Centered window smoothing appears to be the best way to smooth a waveform.

Table 7. Computed RMSE from 16 pairs of samples using the full extent of the smoothed
waveforms. Curves were smoothed up to a moving window of 3% of total wave counts (size 15).

Full Extent (1998) Full Extent (2005)
Type Size 5 Size 10 Size 15 Type Size 5 Size 10 Size 15
Forward 23.58 53.60 83.93 Forward 16.18 35.18 53.44
Backward 22.02 48.58 74.67 Backward 14.77 32.92 50.84
Centered 12.36 9.41 18.55 Centered 7.58 4.47 8.79

Figure 9 showed the relationships of the MDI computed using smoothed waveforms against the
quasi-heights. Trends from Figure 9 and Figure 7 are comparable with each other, having observed a
stronger 1998 linear relationship between MDI and the canopy quasi-height than the 2005
dataset—averaged 1=0.62 (1998) vs averaged = 0.38 (2005) for noise-affected waveform, while
averaged 7=0.30 (1998) vs averaged °=0.22 (2005) for smoothed waveform.
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Figure 9. MDI (smooth full-extent waveform) as a function of quasi-height for the 1998
and 2005 La Selva LVIS datasets. First column: 1998 dataset at various window sizes
and; Second column: 2005 dataset at various window sizes. The relationships shown
between MDI and quasi-height in these figures can be compared with those found in
Figure 7 from noise-affected waveforms.

3.9. Area under the curve (AUC)

Figures 10 and 11 illustrate the MDI as having a far better and stronger relationship with the
quasi-height than the AUC (e.g. ¥* = 0.62 vs * = 0.35 for the 1998 AD), especially if the full-extent
of the waveform is analyzed. The same pattern holds for the UA and the IM models. Table 8 lists the
coefficients of determination (+*) for quasi-height vs the AUC and MDI. MDI shows better fit than
AUC in most tests except in the 2005 trailing subset.
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Table 8. Coefficients of determination (+*) for quasi-height vs the AUC and MDI from

16 pairs of samples for 1998 and 2005 datasets using the full extent and trailing subset
of the waveform.

Full Extent (1998) Full Extent (2005)

Type AUC MDI Type AUC MDI
AD 0.35 0.62 AD 0.002 0.38
UA 0.35 0.62 UA 0.002 0.38
M 0.34 0.62 M 0.001 0.38

Trailing Subset (1998) Trailing Subset (2005)

Type AUC MDI MDI AUC MDI
AD 0.27 0.30 AD 0.33 0.22
UA 0.27 0.30 UA 0.33 0.22
IM 0.26 0.29 IM 0.32 0.20

We computed the RMSE (Table 9) of the AUC for each noise approach using the full
waveform extent. Small RMSE values were related to 5% noise on the waveform while the high

RMSE values were from the 20% noise level, regardless of the type of noise approach. The highest
RMSE values were found using the IM approach.

Table 9. Computed RMSE of AUC from 16 pairs of samples for both 1998 and
2005 datasets using the full extent of the noise-affected waveform.

Full Extent (1998) Full Extent (2005)
Type Size 5 Size 10 Size 15 Type Size 5 Size 10 Size 15
AD 5.38 10.75 16.13 AD 26.55 53.10 79.65
UA 11.58 23.17 34.77 UA 32.02 64.03 96.05
M 14.32 28.64 42.97 M 33.95 65.90 98.85
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Figure 10. AUC and MDI (noise-affected full-extent waveform, using additive) as a
function of quasi-height for the (a) 1998 and (b) 2005 La Selva LVIS datasets. Linear
trend is observed between MDI and canopy quasi-height: ¥ =0.62 (MDI) vs ¥ = 0.35
(AUC) for the 1998 AD; r* = 0.38 (MDI) vs # = 0.002 (AUC) for the 2005 AD.
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Figure 11. AUC and MDI (noise-affected smaller subset waveform, using additive) as
a function of quasi-height for the (a) 1998 and (b) 2005 La Selva LVIS datasets.
Linear trend is still observed between MDI and canopy quasi-height using a short
range: ¥° = 0.30 (MDI) vs #* = 0.27 (AUC) for the 1998 AD; r* = 0.22 (MDI) vs * = 0.33
(AUC) for the 2005 AD.

3.10.  Temporal movement of MDI

For the final analysis, we looked at the movement of the MDI from the pairing of the 1998 to
2005 samples (Figure 12). Two groupings of paired samples were observed. The pairs from the first
group showed decreasing negative MDI as quasi-heights increased, while pairs from the second
group showed decreasing negative MDI as quasi-height decreased (Figure 12a).

The same groups of samples were observed in Figure 12b for the trailing subset waveform. The
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first group of pair samples showed increasing MDI as quasi-heights increased, while pairs from the
second group showed decreasing MDI as quasi-height decreased.
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Figure 12. 1998 and 2005 values of MDI vs quasi-heights plotted to show the shifting
of the MDI over the time period. The arrow shows the direction of the sample pairing
from earlier year to a later year. Two groupings of paired samples were observed for
both the (a) full-extent and (b) trailing subset of the waveform.

4. Discussion

The new MD approach is hardly affected by noise, as shown in our test results when
waveforms corrupted with AD, UD, and IM noise have been fitted with our method. MDI appears to
be sensitive to impulse noise, but robust to the other noise forms. Impulse noise tends to exaggerate
the waveform by introducing spikes when a longer wave count gap exists between peaks (see the
1998 and 2005 shapes in Figure 3 for impulse). Results from these tests are important since we want
the new metric to be robust to random noise in the waveform.

Even with the MDI changing in absolute values at several noise levels (up to 20%), the
relationships with canopy quasi-height are minimally affected. Tests on the noise-affected
waveforms resulted with AD, UD, and IM having the same averaged »° of 0.62 and 0.38, for the
1998 and 2005 data, respectively. Figures 7 and 8 show that good fitting results can be achieved
even with waveforms corrupted with noise, regardless of whether the analysis involves the full
extent or the subset of the waveform. We attribute this robustness of the MDI algorithm to its ability
to define the shape of the wave from two points of perspective, rather than one. Accordingly, the
MDI can minimize the effects of noise present between the left (MDyp) and right (MDgp) pivots.
There were no significant differences of MDI means observed in all trials when we tested using
ANOVA at 0.05 significance level (p>0.05 for both 1998 and 2005 datasets). Although, MDI values
differ in each trial, the values are so close that the symbols in Figures 7 and 8 look like they overlap.
However, these minimal differences did not affect the relationship of MDI to the canopy

quasi-height (cf. Table 4). Will the MDI work in the presence of major error spikes on the waveform?
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As illustrated by the impulse model results, the MDI can attenuate the effects of spikes, but it is
more susceptible to spikes than other noise forms.

The leading subset has very little to no relationship to the quasi-height. This could affirm the
need for a 10% elimination of the upper canopy in height analysis [59]. In contrast, the trailing
subset shows a positive yet low relationship against the quasi-height (Figure 8) with highest
averaged 1 of 0.30 for 1998 and 0.22 for 2005. From 5% to even a high noise of 20%, the pattern of
MDI vs quasi-height remained to be similar for the AD, UD, and IM approaches. In Table 5, we
computed the RMSE of MDI for each noise model using the full waveform and the trailing subset
and found out that the small RMSE values are related to 5% error on the waveform.

In Table 6, the leading subsets for both years come with higher correlation coefficients, r,
compared to the trailing subset. It implies that the waveforms generated with noise levels in the
leading subsets exhibit shape similarity to the original waveform. This observation further suggests
that the noise within the leading region may not have strong effects to the relationship of MDI with
the canopy quasi-height. The above average values of r; observed in the trailing subsets are caused
by a much longer pivot range as well as the steep rise of the curves in between pivots.

While the spikes introduced by IM approach have been detected by the MDI approach as shown
by the MDI distribution of the 1000 iterations of the impulse noise in the previous section (Figures 4,
5, and 6), the MDI is resistant to a single spike or two. The MDI be significantly affected only when a
major spike is of considerable duration and thus be mistaken for a valid signal return or peak.

It should be noted that, in Table 6, a high correlation coefficient, say », = 0.90, does not
necessarily signify that there will be the same MDI values for the original and the noise-affected
waveforms. For example, a noise-affected waveform with a major spike that is near a pivot can
result to a high correlation coefficient compared to the original waveform; however, the presence of
the spike will result to two different values of MDI. Moreover, a low correlation coefficient does not
signify a curve shape that is less effective in estimating canopy characteristics. It is shown that with
the MDI, the noisy curves are still able to show a pattern of MDI-to-height correlations (Figures 7
and 8). It is important to note that waveform shapes are maintained despite the introduction of noise.

We also have shown the new approach to have an advantage over the area under curve
especially for the full waveform. Our results have shown that the MDI has a stronger positive
relationship with the canopy quasi-height than does the AUC (+* = 0.62 vs. #* = 0.35 for the 1998
AD). This improvement is also evident for the 1998 trailing subset. As shown in Table 8, however,
AUC exhibited a better fit with the quasi-height for the 2005 trailing subset. It even came out with a
comparable #° to the 1998 subset, AD approach (+* = 0.27 for AUC vs. 7* = 0.30 for MDI). This
better showing of the AUC against the MDI maybe caused by the shorter pivot range of the subset.
The shorter the pivot, the fewer the points present to define the curve for MDI. Nonetheless, with a
longer pivot such as the full extent, the AUC fails badly (+* = 0.002 for the 2005 AD), especially
with the presence of noise that can amplify the areas under the curve.

When smoothing the waveforms, small smoothing moving windows of 1% to 3% of the total

wave count is recommended. Using moving windows of 5 to 10 counts, even up to a maximum of
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15 counts, can effectively smooth waveform irregularities without risking of leveling small
important peaks, especially those found near the ground return. Also, centered window smoothing
technique may be the best way to smooth a waveform with the least RMSE for 1998 and 2005
datasets, as shown in Table 7. Forward and backward smoothing may fail to work when the
waveform consists of multiple peaks or small peaks in between the major peaks that may vanish due
to the smoothing. This effect explains the large deviations of the MDI (forward and backward
smoothed waveforms) from the reference MDI found in Figure 9 for 2005.

The groupings of the MDI that are seen in Figure 12 are due to the fact that the waveform is
complex and can have different shapes. Three canonical waveform shapes include (a) a maximum
early peak, when the first canopy peak is maximum, or (b) maximum late peak, when the ground
peak is maximum, or (c) roughly equal peaks for both canopy and ground. Our results reveal that
the MDI can capture aspects of temporal dynamics of canopy quasi-heights and group them based
on the curve shapes. How this information can be used to classify the spatial and vertical

heterogeneity of forest structure is the target of a future paper.

5. Conclusion

The Moment Distance framework we have developed is novel and its application to LiDAR
data provides a new, computationally easy approach to characterizing waveform shape. The new
approach decomposes LiDAR waveform returns into left moment (with pivot from early time wave
count) and right moment (with pivot from late time wave count) components, and then computes the
MDI metric. The decomposition allows us to look at how a selected pivot defines the strength of
each point on the waveform from a single point of perspective. The summation of each strength
defines the structural behavior of the asymmetrical curve from, again, a single standpoint. Having
two pivots solidifies the concept of the MD as an approach for shape-characterization by defining
the structural behavior of the waveform not only from a single standpoint, but two.

Moreover, the MDI is minimally affected by noise. It has an advantage over AUC with its
stronger relationship against the canopy quasi-height. MD calculation is straightforward and thus
MDI analysis is easy to replicate.

One important contribution of our metric to waveform analysis is that the customary use of the
Gaussian modeling to fit multiple peaks and improve peak detection may be avoided. While current
waveform optimization fitting schemes rely strongly on initial parameters, which they usually fail in
identifying weak returns, the new approach uses the raw waveform itself to capture shape, without
requiring parameter estimation.

In conclusion, MDI is a robust metric. The results shown in this paper allows us to put forth an
argument on how the new metric will behave against the existing relative height (RH) metric. Also,
the results warrant future tests of MDI using different types of LIDAR waveform shapes—maximum
peak observed at an earlier time, maximum peak observed at a later time, and observed peaks are

equal (roughly) in return magnitude—against the important key profile landmarks of the waveform.
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We plan in a future paper to show how waveform shape and movement of the peaks, dips, and other
landmarks respond to changes in canopy quasi-height. It is crucial to explore the behavior of the MDI
in relation to the temporal changes of waveform shape and landmarks. In this way, we can illustrate
how the new metric can capture temporal change in canopy height and, thus, provide a means to
monitor forest growth and development for habitat assessment and carbon monitoring applications.
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